Publication Series of the John von Neumann Institute for Computing (NIC)
NIC Series Volume 27

John von Neumann Institute for Computing (NIC)

Jorg Striegnitz and Kei Davis (Eds.)

Joint proceedings of the Workshops on
Multiparadigm Programming with
Object-Oriented Languages
(MPOOLO03)

Declarative Programming in the
Context of Object-Oriented
Languages (DP-COOL03)

organized by
John von Neumann Institute for Computing
in cooperation with the

Los Alamos National Laboratory, New Mexico, USA

NIC Series Volume 27

ISBN 3-00-016005-1

Die Deutsche Bibliothek — CIP-Cataloguing-in-Publication-Data
A catalogue record for this publication is available from Die
Deutsche Bibliothek.

Publisher: NIC-Directors
Distributor: NIC-Secretariat
Research Centre Julich
52425 Jilich
Germany
Internet: www.fz-juelich.de/nic
Printer: Graphische Betriebe, Forschungszentrum Jilich

(© 2005 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

NIC Series Volume 27
ISBN 3-00-016005-1

Table of Contents

A Static C++ Object-Oriented Programming (SCOOP) Paradijring

Benefits of Traditional OOP and Generic Programming................. 1
Nicolas Burrus, Alexandre Duret-Lutz, Thierngf@ud, David Lesage,

Raphéal Poss

Object-Model Independence via Code Implants. 35
Michat Cierniak, Neal Glew, Spyridon Triantafyllis, MassliEng, Brian
Lewis, James Stichnoth

The ConS/* ProgrammingLanguages., 49
Matthias M. Hlzl

Functional versus OO Programming: Conflict Withouta Cause. 63
DelLesley Hutchins

An Analysis of Constrained Polymorphism for Generic Progmang. 87
Jaakko a&rvi, Andrew Lumsdaine, Jeremy Siek, Jeremiah Willcock

Top-Down Decompositionin C++.t 109
Asher Sterkin, Avraham Poupko

SOUL and Smalltalk - Just Married 125
Kris Gybels
Unifying Tables, Objects and Documents. 139

Erik Meijer, Wolfram Schulte, Gavin Bierman

Syntax sugar for FC++; lambda, infix, monads,andmore 157
Brian McNamara and Yannis Smaragdakis

Importing alternative paradigms into modern object-aernanguages. 185
Andrey V. Stolyarov

Francis Maes

JSetL: Declarative Programmingin Javawith Sets..................... 229
Elisabetta Poleo and Gianfranco Rossi

SML2Java: A Source to Source Translator. 251
Justin Koser, Haakon Larsen, Jeffrey A. Vaughan

Constraint Imperative Programmingwith C++ 263
Olaf Krzikalla

Patterns in Datatype-Generic Programming.ccooiveon. .. 277
Jeremy Gibbons

A Static C++ Object-Oriented Programming (SCOOP)
Paradigm Mixing Benefits of Traditional OOP and
Generic Programming

Nicolas Burrus, Alexandre Duret-Lutz, Thierry Géraudyidd esage, and Raphaél
Poss

EPITA Research and Development Laboratory
14-16 rue \oltaire, F-94276 Le Kremlin-Bicétre, France
firstname.lastname@lIrde.epita.fr

Abstract. Object-oriented and generic programming are both supgparté++.
OOP provides high expressiveness whereas GP leads to nfiorergfprograms
by avoiding dynamic typing. This paper presents SCOOP, apagadigm which
enables both classical OO design and high performance inb@+#mixing OOP
and GP. We show how classical and advanced OO features suaituas meth-
ods, multiple inheritance, argument covariance, virtypes and multimethods
can be implemented in a fully statically typed model, hendthaut run-time
overhead.

1 Introduction

In the context of writing libraries dedicated to scientifiecnnerical computing, expres-
siveness, reusability and efficiency are highly valuablgofithms are turned into soft-
ware components that handle mathematical abstractiong Wigse abstractions are
mapped into types within programs.

The object-oriented programming (OOP) paradigm offers latism to express
reusable algorithms and abstractions through abstraatga¢s and inheritance. How-
ever, as studied by Driesen and Holzle [18], manipulatinstractions usually results
in a run-time overhead. We cannot afford this loss of pertorae since efficiency is a
crucial issue in scientific computing.

To both reach a high level of expressiveness and reusaibilihe design of object-
oriented scientific libraries and keep an effective runetiefficiency for their routines,
we have to overcome the problem of “abstractions being wiefft”. To cope with that,
one can imagine different strategies.

A first idea is to find an existing language that meets our rements, i.e., a lan-
guage able to handle abstractions within programs withaytpenalty at execution
time. This language has to be either well-known or simpleughdo ensure that a sci-
entist will not be reluctant to use our library. Unforturigtee do not feel satisfied with
existing languages; for instance LOOM and PolyTOIL by Bratal. [11, 9] have the
precise flavor that we expect but, as prototypes, they dosadtife all what a complete
language can offer.

A second approach, chosen by Baumgartner and Russo [6] auh@et al. [8]
respectively for C++ and Java, is to extend an existing esgive language by adding
ad hoc features making programs more efficient at run-tirag.this approach requires
a too great amount of work without any guarantee that exdessiill be adopted by the
language community and by compiler vendors. To overconseatublem, an alternate
approach is to propose a front-end to translate an exteaagdiage, more expressive,
into its corresponding primary language, efficient, sucBtasustrup [48] did with his
erstwhile version of the C++ language. This approach has bele easier than in the
past thanks to recently available tools dedicated to pragranslation, for instance Xt
[56]. However, we have not chosen this way since we are nar@xented enough with
this field.

Another strategy is to provide a compiler that producesiefiicsource codes or
binaries from programs written in an expressive languagetat, several solutions
have been developed that belong to the fields of static anaysl partial evaluation,
as described by Chambers et al. [14], Schultz [41], Velddhuiend Lumsdaine [55]. In
particular, how to avoid the overhead of polymorphic metbalts is studied by Aigner
and Holzle [2], Bacon and Sweeney [4] for C++ and by Zendralef57] for Eiffel.
However, most of these solutions remain prototypes and @ranplemented in well-
spread compilers.

Last, we can take an existing object-oriented language ni toend it to make
some constructs more efficient. That was for instance the cathe expression tem-
plates construct defined by Veldhuizen [53] in C++, laterugitt to Ada by Duret-
Lutz [19], and of mixin-based programming by Smaragdakis Batory [43] in C++.
These solutions belong to the field of tigeneric programmingGP) paradigm, as
described by Jazayeri et al. [26]. This programming styfasaat implementing al-
gorithms as general so reusable as possible without saugifeficiency obtained by
parameterization—related to thenpl at e keyword in C++ and to thgeneric key-
word in Ada and Eiffel. However, from our experience in deyghg a scientific library,
we notice several major drawbacks of GP that seriously redxpressiveness and
affect user-friendliness, whereas these drawbacks doxmstt with “classical” OOP.
A key point of this paper is that we duaot subscribe to “traditional” GP because of
these drawbacks. Said shortly, they have their origin inuthigounded structural typ-
ing of parameterization in C++ which prevents from havingsgly typed signatures
for functions or methods. Consequently, type checking atpite-time is awkward and
overloading is extremely restricted. Justifications of position and details about GP
limitations are given later on in this paper.

Actually, we want to keep the best of both OOP and GP paradigimiseritance,
overloading, overriding, and efficiency—without resogtito a new language or new
tools—translators, compilers, or optimizers. The advéthe C++ Standard Template
Library, mostly inspired by the work of Stepanov et al. [48]one the first serious well-
known artifact of GP. Following that example a lot of sciinttomputing C++ libraries
arose during the past few years(they are referenced by cenesfi38]), one of the most
predominant being Boost [7]. Meanwhile, due to the numefeatures of C++, many
related GP techniques appeared and are described in the bp@kzarnecki and Eise-
necker [17], Alexandrescu [3], Vandevoorde and Josutf§ [doreover, Striegnitz and

Smith [47], Jarvi and Powell [25], Smaragdakis and McNeaa{dd] have shown that

some features offered by a non-object-oriented paradigmmety the functional one,

can be supported by the native C++ language. Knowing thesep@agramming tech-

niques, we then thought that this language was able to suppdOP-like paradigm

without compromising efficiency. The present paper dessrthis paradigm, namely a
proposal for “Static C++ Object-Oriented Programming”:C3QP.

This paper is composed of three parts. Section 2 discusse€3@P and GP para-
digms, their limitations, existing solutions to overconoeng of these limitations, and
finally what we expect from SCOOP. Section 3 shows how SCOORpsemented.
Finally some technical details and extra features have bemmed into appendices.

2 OOP, GP, and SCOOP

A scientific library offers data structuresdalgorithms. This procedural point of view
is now consensual [34] although it seems to go against OOtalyg, an algorithm is
intrinsically a general entity since it deals with absti@ts. To get the highest decou-
pling as possible between data and algorithms, a solutioptad by the C++ Standard
Library and many others is to map algorithms into functiokisthe same time, data
structures are mapped into classes where most of the meth®dsthing but the means
to access data. Last, providing reusable algorithms is aoiitant objective of libraries
so we have to focus on algorithms. It is then easier to conside algorithms and all
other entities are functions (such as in functional langsadp discuss typing issues.
For all these reasons, we therefore adopt in this sectiondaitin-oriented approach of
algorithms.

2.1 About Polymorphisms

A function is polymorphic when its operands can have mora thze type, either be-
cause there are several definitions of the function, or txexas definition allows some
freedom in the input types. The right function to call haséachosen depending on the
context. Cardelli and Wegner [13] outline four differermés of polymorphism.

In inclusion polymorphism, a function can work on any type intgpe classType
classes are named sets of types that follow a uniform irgerfaunctional languages
like Haskell allow programmers to define type classes eitglibut this polymorphism
is also at the heart of OO languages. In C++, inclusion pohpiism is achieved via
two mechanisms: subclassing and overriding of virtual fioms.

Subclassing is used to define sets of types. dlhess (or struct) keyword is
used to define types that can be partially ordered throughratdehy: i.e., an inclusion
relatiort. A function which expects a pointer or reference to a ckassll accept an
instance ofA or any subclass oA. It can be noted that C++’s typing rules make no

Y Inclusion polymorphism is usually based on a subtypingti@ia but we do not enter the
debate about “subclassing v. subtyping” [15].

difference between a pointer to an object whose type is Bxacind a pointer to an
object whose type belongs to the type class®of

Overriding of virtual functions allows types whose opavat have different im-
plementations to share the same interface. This way, aratgeican be implemented
differently in a subclass of than itis inA. Inclusion polymorphism is sometime called
operation polymorphisrfor this reason.

These two aspects of inclusion polymorphism are hardlydissle: it would make
no sense to support overriding of virtual functions withsuibclassing, and subclassing
would be nearly useless if all subclasses had to share the isgplementation.

In parametric polymorphism, the type of the function is represented using at least
one generic type variable. Parametric polymorphism readlyesponds to ML generic
functions, which are compiled only once, even if they areduséh different types.
Cardelli and Wegner states that Ada’s generic functionsnateto be considered as
parametric polymorphism because they have tmb&ntiated explicitheach time they
are used with a different type. They see Ada’s generic fonstias a way to produce
several monomorphic functions by macro expansion. It wolddefore be legitimate
to wonder whether C++’s function templates achieve parampblymorphism. We
claim it does, because unlike Ada’s generics, C++'s tereplate instantiatachplicitly.

In effect, it does not matter that C++ instantiates a fumcfir each type while ML
compiles only one function, because this is transparemtgaiser and can be regarded
as an implementation detil

These two kinds of polymorphism are callediversal A nice property is that they
are open-ended: it is always possible to introduce new tgpego use them with ex-
isting functions. Two other kinds of polymorphism do notghthnis property. Cardelli
and Wegner call therad-hoc

Overloading corresponds to the case where several functions with diftetypes
have the same name.

Coercion polymorphism comes from implicit conversions of arguments. These
conversions allow a monomorphic function to appear to bgmotphic.

All these polymorphisms coexist in C++, although we willaliss some notable in-
compatibilities in section 2.3. Furthermore, apart fromiual functions, the resolution
of a polymorphic function call (i.e., choosing the right défon to use) is performed
at compile-time.

2.2 About the Duality of OOP and GP

Duality of OOP and GP has been widely discussed since Meggr$® we just recall
here the aspects of this duality that are related to our probl

Let us consider a simple functidoo that has to run on different image types. In
traditional OOP, the image abstraction is represented Iajpatract classmage , while

2n Ada, one can writaccess A or access A'Class to distinguish a pointer to an in-
stance ofA from a pointer to an instance of any subclas#\.of

% This implementation detail has an advantage, though:dialispecialized instantiations (i.e.,
template specializations). To establish a rough paraiil iwclusion polymorphisptemplate
specializations are to templates what method overriditmssibclassing. They allow to change
the implementation for some types.

a concrete image type (for instaniweage2D) for a particular kind of 2D images, is
a concrete subclass of the former. The same goes for thennaititpoint” that gives
rise to a similar family of classe®oint , which is abstract, anHoint2D , a concrete
subclass oboint . That leads to the following coe

struct Image{
virtual void set (const Point& p, int val) = 0;

¥

struct Image2D :public Image{
virtual void set(const Point& p, int val) { /x impl «/ }

¥

void foo(Image& input,const Point& p) {
/I does something like :
input. set(p, 51);

}

int main() {
Image2D ima; Point2D p;
foo(ima, p);

}

foo is a polymorphic function thanks taclusion through class inheritanc&he
call input.set(p, 51) results in a run-time dispatch mechanism which binds this
call to the proper implementation, namétyage2D::set . In the equivalent GP code,
there is no need for inheritance.

struct Image2D{
void set (const Point2D& p,int val) { /« impl %/ }

b

template <classIMAGE, classPOINT>
void foo(IMAGE& input, constPOINT& p) {
/I does something like :
input . set(p, 51);

}

int main() {
Image2D ima; Point2D p;
foo(ima, p);

}

foo is now polymorphic througlparameterizationAt compile-time, a particular
version offoo is instantiatedfoo<image2D, Point2d> , dedicated to the particular
call tofoo in main. The basic idea of GP is that all exact types are known at dempi
time. Consequently, functions are specialized by the clampnoreover, every function
call can be inlined. This kind of programming thus leads fizieint executable codes.

4 Please note that, for simplification purpose, wesiseuct instead oft| ass and that we do
not show the source code corresponding toRbat hierarchy.

The table below briefly compares different aspects of OOPGRd

[notion] OOP [GP |
typing named typing through class names structural
so explicit in class definitions so only described in documentation
abstraction| abstract class formal parameter
(e.g., image] (e.g.Image) (e.g.IMAGB
inheritance) is the way to handle abstractions is only a way to factorize code
method no-variant —
(set) (Image::set(Point, int) —
Image2D::set(Point, int)) —
algorithm a single code at program-time a single meta-code at program-time
(foo) (foo) (tenmpl ate<..> foo)
and a unique version at compile-time and several versions at compile-time
(foo) (foo<lmage2D,Point2D> | etc.)
efficiency poor high

From the C++ compiler typing point of view, our OOP code carrbaslated into:
type Image = set : Point— Int — Void }
foo : Image— Point— Void
foo Is restricted to objects whose types are respectively asbes ofimage and
Point . For our GP code, things are very different. First, the imalgstraction is not
explicitly defined in code; it is thus unknown by the compiteecond, both formal pa-
rameters ofoo are anonymous. We then rename them respectively “I” andriRhé
lines below and we get:
vl, VP, foo:l— P— \oid
Finally, if these two pieces of code seem at a first sight edent, they do not
correspond to the same typing behavior of the C++ langudyges,They are treated dif-
ferently by the compiler and have different advantages aadloacks. The programmer
then faces the duality of OOP and GP and has to determinathvglairadigm is best
suited to her requirements.

During the last few years, the duality between OOP and GPikies gse to several
studies.

Different authors have worked on the translation of somégdgsatterns [22] into
GP; let us mention Géraud et al. [23], Langer [27], Duretzlet al. [20], Alexandrescu
[3], Régis-Gianas and Poss [39].

Another example concerns tv@tual typesconstruct, which belongs to the OOP
world even if very few OO languages feature it. This congthas been proposed as an
extension of the Java language by Thorup [50] and a debatg #imtranslation and
equivalence of this construct in the GP world has followe@ A1, 40].

Since the notion of virtual type is of high importance in tb#dwing of this paper,
let us give a more elaborate version of our previous exantplan augmented C++
language, we would like to express that both families of ienagd point classes are
related. To that aim, we could write:

struct Image{
virtual typedef Point pointtype = 0;
virtual void set(const pointtype & p, int val) = 0;

b

struct Image2D :public Image{

virtual typedef Point2D pointtype ;
virtual void set(const pointtype & p, int val) { /x impl %/ }

b

point_type is declared in thelmage class to be an “abstract type alias”
(virtual typedef .. point_type = O;) with a constraint: in subclasses of
Image , this type should be a subclassryint . In the concrete classnage2D, the
aliaspoint_type is defined to bé&oint2D . Actually, the behavior of such a construct
is similar to the one of virtual member functions: uspwint_type on an image ob-
ject depends on the exact type of the object. A sample useistdd hereafter:

Imagex ima =newImage2D();
1
Point« p = new (ima—>pointtype)();

At run-time, the particular exact type ofis Point2D since the exact type adfa is
Image2D.

An about equivalent GP code in also an augmented C++ is asvsll

struct Image2D{

typedef Point2D pointtype ;

void set (const pointtype & p, int val) { /x impl «/ }
1

template <class|>
where | {
typedef pointtype ;
void set (const pointtype &, int);

}

void foo(l& input, const typenamel:: point_type & p) {
/I does something like :
input. set(p, 51);

}

int main() {
Image2D ima; Point2D p;
foo(ima, p);

}

Such as in the original GP code, inheritance is not used goiaigys fully structural.
On the other hand, where clausdnas been inserted fioo 's signature to precise the
nature of acceptable type values foiThis construct, which has its origin in CLU [29],
can be found in Theta [28], and has also been proposed as emsixt of the Java
language [35]. From the compiler point of vielap 's type is much more precise than
in the traditional GP code. Finally, in both C++ OOP augmeéntéh virtual types and
C++ GP augmented with where clauses, we get stronger ex@esss.

2.3 OOP and GP Limitations in C++

Object-Oriented Programming relies principally on the inclusion polymorphism. Its
main drawback lies in the indirections necessary to rure-tiesolution of virtual meth-

ods. This run-time penalty is undesirable in highly compatel code; we measured
that getting rid of virtual methods could speed up an algariby a factor of 3 [24].

This paradigm implies a loss of typing: as soon as an objegda as one of its base
classes, the compiler looses some information. This limjtsmization opportunities
for the compiler, but also type expressiveness for the d@ezl For instance, once the
exact type of the object has been lost, type deductiodeducted_type) is not
possible. This last point can be alleviated by the use ofi@iypes [51], which are not
supported by C++.

The example of the previous section also expresses the rmedoVariance:
foo calls the methodet whose expected behavior is covariaiob precisely calls
Image2D::set(Point2D, i nt) in the GP version, whereas the call in the OOP ver-
sion corresponds tinage::set(Point, int).

Generic Programing on the other hand relies on parametric polymorphism and
proscribes virtual functions, hence inclusion polymosphi The key rule is that the
exact type of each object has to be known at compile-times atows the compiler to
perform many optimizations. We can distinguish three kiofdssues in this paradigm:

— the rejection of operations that cannot be typed statically
— the closed world assumption,
— the lack of template constraints.

The first issues stem from the will to remain statically typ€utual functions are
banished, and this is akin to rejecting inclusion polymdsph Furthermore there is no
way to declare an heterogeneous list and to update it atima-br, more precisely to
dynamically replace an attribute by an object of a compashbbtype. These operations
cannot be statically typed, there can be no way around this.

The closed world assumption refers to the fact that C++'gtates do not support
separate compilation. Indeed, in a project that uses paranpelymorphism exclu-
sively it prevents separate compilation, because the demmust always know all type
definitions. Such monolithic compilation leads to longeitdbtimes but gives the com-
piler more optimization opportunities. The C++ standardsiipports separate compi-
lation of templates via thexpor t keyword, but this feature has not been implemented
in mainstream C++ compilers yet.

The remaining issues come from bad interactions betweeanpric polymor-
phism and other polymorphisms in C++. For instance, bectamsplate arguments are
unconstrained, one cannot easily overload function tetapldrigure 1 illustrates this
problem. When using inclusion polymorphism (left), the giler knows how to re-
solve the overloading: ifirg is an instance of a subclassAf, resp.A2, it should be
used with the first resp. second definitionfad() . We therefore have two implemen-
tations offoo() handling two different sets of types. These two sets arelneéd (it is
always possible to add new subclasses), but they are corestrérbitrary types cannot
be added unless they are subtypesbbr A2. This constraint, which distinguishes the
two sets of types, allows the compiler to resolve the oveliluz

In generic programming, such an overloading could not beesel, because of
the lack of constraints on template parameters. The middiexa on Figure 1 shows
a straightforward translation of the previous example jpoametric polymorphism.

template<classAl1> template<classAl>

void foo(Al1& arg) void foo(A1& arg) void foo(A1& arg)
arg.m1() arg.ml() arg.ml()
} } }
template<classA2> template<>
void foo(A2& arg) void foo(A2& arg) // illegal void foo<A2>(A2& arg)
arg.m2() arg.m2() arg.m2()

Fig. 1. Overloading can be mixed with inclusion polymorphism {lefut will not work with
unconstrained parametric polymorphism (middle and right)

Because template parameters cannot be constrained, ttiofhls arguments have to
be generalizetbr any typea, andfor any typeB. Of course, the resulting piece of code
is not legal in C++ because both functions have the same &/palid possibility (on
the right of Figure 1), is to write a definition é&fo for any typeAl, and therspecialize
this definition for typeA2. However, this specialization will only work for one type
(A2), and would have to be repeated for each other type that neusaihdled this way.

Solving overloading is not the only reason to constrain tiameparguments, it can
also help catching errors. Libraries like STL, which relygemeric programming, docu-
ment the requirements that type arguments must satisfgeltenstraints are gathered
into conceptssuch adforward iterator or associative containefd6]. However, these
concepts appear only in the documentation, not in typinth@lgh some techniques
have been devised and implemented in SGI's STL to check pdsie¢ compile-time,
the typing of the library still allows a function expectindaaward iteratorto be instan-
tiated with anassociative containefEven if the compilation will fail, this technique
will not prevent the compiler from instantiating the furmtj leading to cryptic error
messages, because some function part ofdheard iterator requirements will not be
found in the passed associative container. Couldféheard iterator have been ex-
pressed as a constraint on the argument type, the error \hauklbeen caught at the
right time i.e. during the attempt to instantiate the fuocttemplate, not after the in-
stantiation.

2.4 Existing Clues

As just mentioned, some people have already devised waysekaconstraints. Siek
and Lumsdaine [42] and McNamara and Smaragdakis [31] pragenhnique to check
template arguments. This technique relies on a short chgddde inserted at the top
of a function template. This code fails to compile if an argunhdoes not satisfy its
requirements and is turned into a no-op otherwise. Thigiigcie is an effective means
of performing structural checks on template argumentstichaarrors earlier. However,
constraints are justheckedthey are noexpresseas part of function types. In particu-
lar, overloading issues discussed in the previous sect®na solved. Overloading has

to be solved by the compildéreforetemplate instantiation, so any technique that works
after template instantiation does not help.

Ways toexpressonstraints by subtyping exist in Eiffel [33] and has beesposed
as a Java extension by Bracha et al. [8]. Figure 2 shows homitsiC++ extension
could be applied to the example from Section 2.2.

concept imag¢
typedef pointtype ;
void set (const pointtype & p, int val);

¥

struct Image2D models imagg

typedef Point2D pointtype ;

void set (const pointtype & p, int val) { /x impl «/ }
b

template <class| models image-

void foo(l& input, const typenamel:: point_type & p) {
/I does something with:
input. set(p, 51);

}

int main() {
Image2D ima; Point2D p;
foo(ima, p);

}

Fig. 2. Extending C++ to support concept constraints

We have introduced an explicit construct through the keygMeoncept to express
the definition ofimage , the structural type of images. This construct is also sinii
the notion of signatures proposed by Baumgartner and R@$ss[a C++ extension.
Having explicitly a definition ofimage constraints the formal parametern foo s
type.

Some interesting constructions used to constrain paranlymorphism or to
emulate dynamic dispatch statically rely on a idiom knowthaBarton and Nackman
trick [5] also known as th€uriously Recurring Template Pattefh6]. The idea is that
a super class is parameterized by its immediate subclapsréR8), so that it can define
methods for this subclass.

For instance the Barton and Nackman trick has been used hyishuj21] to
constrain parametric polymorphism and simplify the Expi@s Template technique
of Veldhuizen [53].

10

template <classT>

struct super struct infer : public supekinfer>
void foo(const T& arg) ! I
{ %
..
}
h

Fig. 3. The Barton and Nackman trick

2.5 Objectives of SCOOP

Our objective in this paper is to show how inclusion polyntosm can be almost com-
pletely emulated using parametric polymorphism in C++ wipifeserving most OOP
features. Let us define our requirements.

Class Hierarchies.Developers should express (static) class hierarchiediljesn the
traditional (dynamic) C++ OOP paradigm. They can draw UMitistdiagrams to de-
pict inheritance relationships between classes of thegams. When they have a class
in 00, sayBar , its translation in SCOOP is a single class template?>.

Named TypingWhen a scientific practitioner designs a software libraig,convenient
to reproduce in programs the names of the different ab&irecof the application do-
main. Following this idea, there is an effective benefit tdkenexplicit the relationships
between concrete classes and their corresponding alististd get a more readable
class taxonomy. We thus prefer named typing over structypaig for SCOOP.

Multiple Inheritance.In the object model of C++, a class can inherits of severakesa
at the same time. There is no reason to give up this featur€ Ca.

Overriding. With C++ inheritance come the notions of pure virtual fuons, of vir-
tual functions, and of overriding functions in subclasd#fe. want to reproduce their
behavior in SCOOP but without their associated overhead.

Virtual Types. This convenient tool (see sections 2.2 and 2.3) allows toesspthat

a class encloses polymorphigpedef s. Furthermore, it allows to get covariance for
member functions. Even if virtual types does not exist inmany C++, we want to
express them in SCOOP.

Method Covariancelt seems reasonable to support method covariance in SC@OP, a
particularly binary methods. Since our context is statpgrig with parametric polymor-
phism, the C++ compiler may ensure that we do not get typinglpms eventually.

° We are aware of a solution to encode static class hierartiégss different to the one pre-
sented later on in this paper. However, one drawback of ttésnate solution is to duplicate
every class: having a claBar in OOP gives rise to a couple of classes in the static hieyarch
To our opinion, this is both counter-intuitive and tedious.

11

Overloading. In the context of scientific computing, having overloadisgiucial. For
instance, we expect from the operatet to be an over-overloaded function in an alge-
braic library. Moreover, overloading helps to handle aatitan that often arises in sci-
entific libraries: some algorithms have a general implemt@nt but also have different
more efficient implementation for particular families ofjetts. We want to ensure in
SCOOP that overloading is as simply manageable as in OOP.

Multimethods. Algorithms are often functions with several input or arguntse Since
the source code of an algorithm can also vary with the natodenamber of its input,
we need multimethods.

Parameter BoundsRoutines of scientific libraries have to be mapped into giiyn
typed functions. First, this requirement results in a camfior the users since it pre-
vents them from writing error-prone programs. Second, ibégiirement is helpful to
disambiguate both overloading and multimethod dispatch.

3 Description of SCOOP

3.1 Static Hierarchies

Static hierarchies are meta-hierarchies that result inhiesarchies after various sta-
tic computations like parameter valuations. With them, weeable to know all types
statically hence avoiding the overhead of virtual methahation. Basically, the core
of our static hierarchy system is a generalization of thada®& Nackman trick [5].
Veldhuizen [54] had already discussed some extensionsofebhnique and assumed
the possibility to apply it to hierarchies with several lsvé\Ve effectively managed to
generalize these techniques to entire, multiple-levebnghnies.

Our hierarchy system is illustrated in Figure 4. This figuneeg an example of a
meta-hierarchy, as designed by the developer, and desdhbdifferent final hierar-
chies obtained, according to the instantiated class. Thregmonding C++ code is given
in Figure 5. This kind of hierarchy gives us the possibilitydefine abstract classes
(classA), concrete extensible classes (cl&sand final classes (clasy. Non final
classe$ are parameterized bgXACTthat basically represents the type of the object
effectively instantiated. Additionally, any class hierfay must inherit from a special
base class calledny. This class factorizes some general mechanisms whosermle a
detailed later.

Instantiations of abstract classes are prevented by pitogetbeir constructors. The
interfaces and the dispatch mechanisms they provide aaéatbin Section 3.2.

Extensible concrete classes can be instantiated and exdaydsubclassing. Since
the type of the object effectively instantiated must be pggied through the hierarchy,
this kind of class has a double behavior. When such a 8l&sextended and is not the
instantiated class, it must propagateB$ACTtype parameter to its base classes. When

8 Non final classes are abstract classes or concrete classesithbe extended. Non parameter-
ized classes are necessarily final in our paradigm.

12

Instantiation of B Instantiation of C

Fig. 4. Static hierarchy unfolding sample
A single meta-hierarchy generates one class hierarchynptritiable class. Our model can
instantiate both leaf classes and intermediate ones.drei@mple, only andC are
instantiable, so only the above two hierarchies can beritiatad.
Non final classes are parameterized®YACTwhich represents the type of the object
effectively instantiated. The tydeself s used as a terminator when instantiating extensible
concrete classes.

13

/I Hierarchy apparel

struct Itself

{}

/I findeexact utility macro
#define find_exact (Type)//

template <classEXACT>
class Any

{
I

h

/I Hierarchy

/I purely abstract class
template <classEXACT>
class A: public Any<EXACT>

{
I

h

/I extensible concrete class
template <classEXACT = Itself>
class B: public A<find_exact(B)>

{
I

h

/I final class
class C: public B<C>

{
I

I

Fig. 5. Static hierarchy sample: C++ code

find_exact(Type)

mechanism is detailed in Appendix A.1.

14

it is effectively instantiated, further subclassing isyameted by using theself termi-
nator asEXACTparameter. TherB cannot propagate itSXACTparameter directly and
should propagate its own typesltself> . To determine the effectivEXACTparame-

ter to propagate, we use a meta-program cdltet exact(Type) whose principle
and C++ implementation are detailed in Appendix A.1. Oneusth@lso notice that
Itself is the default value for theXACTparameter of extensible concrete classes.
Thus,B sample class can be instantiated usinggke syntax.

Itself classes cannot be extended by subclassing. Constygubey do not need
any EXACTparameterization since they are inevitably the instagdiaype when they
are part of the effective hierarchy. Then, they only haverappgate their own types to
their parents.

Within our system, any static hierarchy involvingoncrete classes can be unfolded
into n distinct hierarchies, wit distinct base classes. Effectively, concrete classes
instantiated from the same meta-hierarchy will have déif¢base classes, so that some
dynamic mechanisms are made impossible (see Section 2.3).

3.2 Abstract Classes and Interfaces

In OOP, abstraction comes from the ability to express clasfaces without imple-
mentation. Our model keeps the idea that C++ interfacesegmesented by abstract
classes. Abstract classes declare all the services thaitamses should provide. The
compliance to a particular interface is then naturally eediby the inheritance from
the corresponding abstract class.

Instead of declaring pure virtual member functions, alcsttlasses define abstract
member functions as dispatches to their actual implemientathis manual dispatch is
made possible by thexact() accessor provided by thny class. Basicallyexact()
downcasts the object to itSXACTtype made available by the static hierarchy sys-
tem presented in Section 3.1. In practieeact() can be implemented with a simple
static_cast construct, but this basic mechanism forbids virtual infa@dée. Within
our paradigm, an indirect consequence is that multipleritdrece implies inevitably
virtual inheritance sincény is a utility base class common to all classes. Advanced
techniques, making virtual and thus multiple inheritanosgible, are detailed in Ap-
pendix A.2.

An example of an abstract class with a dispatched methodéngn Figure 6. The
corresponding C++ code can be deduced naturally from thig dgram. In the ab-
stract clas®\, the methodn(...) calls its implementatiom_impl(...) . Method’s
interface and implementation are explicitly distinguidh®y using different names.
This prevents recursive calls of the interface if the impatation is not defined. Of
course, overriding the implementation is permitted. Thsatioktheexact() downcast,
m_impl(...) is called on the type of the object effectively instantiatetlich is nec-
essarily a subclass @ Thus, overriding rules are respected. SinceBRRACTtype is
known statically, this kind of dispatch is entirely perfagthat compile-time and does
not require the use of virtual symbol tables. Method didpagccan be inlined so that
they finally come with no run-time overhead.

7 Virtual inheritance occurs in diamond-shape hierarchies.

15

' EXACT !
| I |

Any

+ exact(): EXACT jo———s| return static_cast<EXACT>("this);

[

A

+m(..):void Jo———>| return this->exact().m_impl(...);

I

+ m_impl(...): void

Fig. 6. Abstract class and dispatched abstract method sample

3.3 Constraints on Parameters

Using SCOORP, it becomes possible to express constrainigpes.tSince we have in-
heritance between classes, we can specify that we only wauth@dass of a particular
type, thereby constraining the input type. Thus, OOP’sitgitiib handle two different
sets of types has been kept in SCOOP, as demonstrated ire Figur

Actually, two kinds of constraints are made possible: atedype and all its sub-
classes or accept only this type. Both kinds of constraigdlastrated in Figure 8. We
have the choice between letting tBACTparameter free to accept all its subclasses,
or freezing it (generally tétself) to accept only this exact type.

3.4 Associations

In SCOOP, the implementation of object composition or agatien is very close to
its equivalent in C++ OOP. Figure 9 illustrates the way anregation relation is im-
plemented in our paradigm, in comparison with classical O@ want a clas® to
aggregate an object of tygg which is an abstract class. The natural way to implement
this in classical OOP is to maintain a pointer on an objecyp&éC as a member of
classB. In SCOOP, the corresponding meta-clBgs parameterized bEXACT as ex-
plained in Section 3.1. Since all types have to be knowncstiyfj B must know the
effective type of the object it aggregates. A second paranXACT_C is necessary
to carry this type. Therg only has to keep a pointer on an object of typeEXACT_C>»
As explained in Section 3.3, this syntax ensures that theeggted object type is a
subclass of. This provides stronger typing than the generic prograngrmdioms for
aggregation proposed in [20].

16

template <classEXACT>

void foo(A1& arg) void foo(A1<EXACT>& arg)
{ {

.. 1
} }

template <classEXACT>

void foo(A2& arg) void foo(A2<EXACT>& arg)
{ {

.. 1
} }

Fig. 7. Constraints on arguments and overloading
Left (classical OOP) and right (SCOOP) codes have the saimevime. Classical overloading
rules are applied in both cases. SubclasseslaindA2 are accepted in SCOOP too; the
limitation of GP has been overcome.

template <classEXACT>

void foo(A<EXACT>& a) void foo(A<Itself>& a)
{ {

.. 1
} }

Fig. 8.Kinds of constraints
On the left, A and all its subclasses are accepted. On the right, only éagfuments are
accepted. As mentioned in section 2.1, contrary to otheguages like Ada, C++ cannot make
this distinction; this is therefore another restrictioremome by SCOOP.

17

As for hierarchy unfolding (Section 3.1), this aggregatattern generates as many
versions ofB as there are distinct paramet&s$ACT_C Each effective version @ is
dedicated to a particular subclass®fThus, it is impossible to change dynamically
the aggregated object for an object of another concrete fyme limitation is directly
related to the rejection of dynamic operations, as mentiam&ection 2.3.

| EXACT_C

— 1 EXACT

_____ P |
B - .
| EXACT.C'!

1
+cCr KO—F0 c +C:C<EXACT_C>* l
aggregation in classical OOP aggregation in SCOOP

Fig. 9. Comparison of aggregation in OOP and SCOOP

3.5 Covariant Arguments

Covariant parameters may be simulated in C++ in several wiaysin be done by
using adynani c_cast to check and convert at run-time the type of the argument.
This method leads to unsafe and slower programs. Statichlgked covariance has
already been studied using templates in Surazhsky and &il Their approach was
rather complex though, since their typing system was weaker

Using SCOORP, it is almost straightforward to get staticalecked covariant pa-
rameters. We consider an example with images and points imd2Z3alimensions to
illustrates argument covariance. Figure 10 depicts a UMdgidim of our example.
Since arimage2d can be seen as amage, it is possible to give oint3d (seen as a
Point) to animage2d . This is why classical OO languages either forbid it or perfo
dynamic type checking when argument covariance is involved

Figure 11 details how this design would be implemented in S€0This code
works in three steps:

— Take aPoint<P> argument inimage::set and downcast it into its exact type
Taking aPoint<P> argumentensures thRits a subclass dfoint at this particular
level of the hierarchy.

— Lookupset_impl in the exact image type. Since the point argument has been
downcasted towards methods acceptirg(and not jusPoint<P>) are candidate.

— In SCOOP, since method dispatch is performed at compile;targument covari-
ance will be checked statically. The compilation fails if method accepting the
given exact point type is available.

18

Image

+set(p:Point, val:int):void m
ﬁl /\

Image2d Image3d ’ Point2d | ’ Point3d |

+set(p:Point2d, val:int): void +set(p:Point3d, val:int): void

Fig. 10. Argument covariance example in UML

Finally, we have effectively expressed argument covagaRoints have to conform
to Point at the level ofimage , and toPoint2d at the level oimage2d .

3.6 Polymorphict ypedef s

In this section we show how we can write virtualpedef s (we also call them poly-
morphict ypedef s) in C++. From a base class we want to actgsgedef s defined in

its subclasses. Within our paradigm, although base cldssddghe type of their most
derived subclass, it is not possible to access fields of amiptete type. When a base
class is instantiated, iBXACTparameter is not completely constructed yet because base
classes have to be instantiated before subclasses. A gliidsdo cope with this issue

is to use traits [36, 54]. Traits can be defined on incompigies, thereby avoiding the
infinite recursion.

The overall mechanism is described in Figure 12. To allow lihee class to
accesst ypedef s in the exact class, traits have been defined for the exaet typ
(image_traits). To ensure correct typedef inheritance, we create a ltieyaof traits
which reproduces the class hierarchy. Thysedef s are inherited as if they were ac-
tually defined in the class hierarchy. As for argument carare, virtuat ypedef s are
checked statically since method dispatch is performedrapde-time. The compilation
fails if a wrong point type is given to amage2d .

There is an important difference between classical virtypés and our virtual
t ypedef s. First, the virtuak ypedef s we have described are not constrained. The
point_type virtualt ypedef does not have to be a subclassPofnt . It can be any
type. It is possible to express a subclassing constrainigindoy checking it explicitly
using a meta-programming technique detailed in Appendsx A.

One should note that in our paradigm, when usiggedef s, the resulting type
is a single type, not a class of types (with the meaning ofi&e@&.3). A procedure
taking this type as argument does not accept its subclaSeesnstance, a subclass
SpecialPoint2d of Point2d is not accepted by theet method. This problem is
due to the impossibility in C++ to makeenpl at e t ypedef s, thus we have to bound
the exact type of the class when makingygpedef on it. It is actually possible to
overcome this problem by encapsulating open types in baxXas.is not detailed in
this paper though.

19

template <classEXACT>
struct Point : public Any<EXACT> {};

template <classEXACT = Itself>
struct Point2d : public Point<find_exact (Point2d}
{

I

+

template <classEXACT = Itself>
struct Point3d : public Point<find_exact (Point3d)
{

1

h

template <classEXACT>
struct Image : Any<EXACT>
{
template <classP>
void set (const Point<P>& p, int val) {
/I static dispatch
/I p is downcasted to its exact type
return this —>exact(). seimpl (p.exact (), val);
}
1

template <classEXACT = Itself>
struct Image2d :public Image<find_exact(Image2d}
{
template <classP>
void setimpl (const Point2dP>& p, int val) {
..
}
b

int main() {
Image2d > ima;
ima. set (Point2e >(), 42); /I ok
ima. set (Point3e>(), 51); // fails at compile-time

}

Fig. 11. Argument covariance using SCOOP
Compilation fails if the compiler cannot find an implemeidatof set_impl for the exact
type of the given point inmage2d .

20

/I Point, Point2d and Point3d

/I A forward declaration is enough to define imapeits
template <classEXACT> struct Image;

template <classEXACT> struct imagetraits;

template <classEXACT>
struct imagetraits < Image<EXACT> >

/I default typedefs for Image
b

template <classEXACT>
struct Image : Any<EXACT>
{

typedef typenameimagetraits< EXACT>::point.type pointtype;

void set (const pointtype & p, int val) {
this —>exact(). seimpl (p, val);
}
h

/I Forward declaration
template <classEXACT> struct Image2d;

/I imagetraits for Image2d inherits from imaggaits for Image
template <classEXACT>
struct imagetraits < Image2ck EXACT> >

: public imagetraits <Image<find_exact(Image2d} >

/I We have to specify a concrete type, we cannot write:
/I typedef template Point2d poitype ;

typedef Point2c Itself> point.type ;
/I ... other default typedefs for Image2d

b

template <classEXACT = Itself>
struct Image2d : public Image<find_exact(Image2d)

{
I

h
int main() {
Image2c > ima;

ima. set (Point2et >(), 42); // ok
ima. set (Point3et>(), 51); // fails at compile-time

}

Fig. 12.Mechanisms of virtual ypedef s with SCOOP
21

3.7 Multimethods

Several approaches have been studied to provide multitietinoC++, for instance
Smith [45], which relies on preprocessing.

In SCOOP, a multimethod is written as a set of functions sigaifie same name.
The dispatching is then naturally performed by the oveiilogicesolution, as depicted
by Figure 13.

template <classll, class 12>
void algo2(Image:l1>&il, Image<|2>& i2);

template <classll, class 12>
void algo2(Image2¢11>& i1, Image3kl|2>& i2);

template <classll, class 12>
void algo2(Image2¢11>& i1, Image2d&12>& i2);

/I ... other versions of algo2

template <classll, class 12>
void algol(Imagell>&il, Image<i2>& i2)

/I dispatch will be performed on the exact image types
algo2(il.exact (), i2.exact ());

}

Fig. 13. Static dispatch for multi-methods
algol downcastsl andi2 into their exact types when callirmjgo2 . Thus, usual
overloading rules will simulate multimethod dispatch.

4 Conclusion and Perspectives

In this paper, we described a proposal for a Static C++ Olfjeinted Programming
(SCOOP) paradigm. This model combines the expressiverigssditional OOP and
the performance gain of static binding resolution thankgesioeric programming mech-
anisms. SCOOP allows developers to design OO-like hieiesamnd to handle abstrac-
tions without run-time overhead. SCOOP also features cainstd parametric polymor-
phism, argument covariance, polymorphigpedef s, and multimethods for free.

Yet, we have not proved that resulting programs are type $&fe type properties
of SCOOP have to be studied from a more theoretical point @vvSince SCOOP
is static-oriented, object types appear with great pregisiWe expect from the C++
compiler to diagnose most programming errors. Actuallyhaee the intuition that this

22

kind of programming is closely related to thetchingtype system of Bruce et al. [11].
In addition, functions in SCOOP seem to be f-bounded [12].

The main limitations of our paradigm are common drawbackbefintensive use
of templates:

closed world assumption;

heavy compilation time;

code bloat (but we trade disk space for run-time efficiency);
cryptic error messages;

unusual code, unreadable by the casual reader.

The first limitation prevents the usage of separated conimilaand dynamic libraries.
The second one is unavoidable since SCOOP run-time efficieties on the C++ ca-
pability of letting the compiler perform some computatiofise remaining drawbacks
are related to the convenience of ttwre developeri.e. the programmer who designs
the hierarchies and should take care about core mechan@yysyc error messages
can be helped by the use of structural checks mentionneccin8e.4, which are not
incompatible with SCOOP.

This paradigm has been implemented and successfully deglioya large scale
project: Olena, a free software library dedicated to imagecgssing [37]. This li-
brary mixes different complex hierarchies (images, peimsghborhoods) with highly
generic algorithms.

Although repelling at first glance, SCOOP can be assimilagtatively quickly
since its principles remain very close to OOP. We believe$izOOP and its collection
of constructs are suitable for most scientific numerical gotimg projects.

23

A Technical Details

A.1 Implementation of f i nd_exact

Thefind_exact mechanism, introduced in Section 3.1, is used to enablsedabat
are both concrete and extensible within our static hiesasgistem. This kind of class
is parameterized b¥XACT the type of the object effectively instantiated. Contrary
to abstract classes, concrete extensible classes carmpatgate directly theilEXACT
parameter to their parents, as explained in Section 3.1m#lsi utility macro called
find_exact is necessary to determine tBEACTtype to propagate. This macro relies
on a meta-progrankindExact , whose principle is described in Figure 14. and the
corresponding C++ code is given in Figure 15.

FindExact(Type, EXACT)

if EXACT #" Itself”
return EXACT,

else
return Type < Itself >;

Fig. 14.FindExact mechanism: algorithmic description

/I default version
template <classT, class EXACT>
struct FindExact

typedef EXACT ret;
b
/I version specialized for EXACT=Itself
template <classT>

struct FindExackT, ltself >

{
typedef T ret;
b

/I findexact utility macro
#define find_exact (Type)typenameFindExack Type<Exact>, Exact>::ret

Fig. 15.FindExact mechanism: C++ implementation

24

A.2 Static Dispatch with Virtual Inheritance

Using ast ati c_cast to downcast a type does not work when virtual inheritance is
involved. Let us consider an instance of EXACT. Itis possiblcreate aAny<EXACT>
pointer on this instance. In the following, the address fealrio by theAny<EXACT>
pointer is called “theAny address” and the address of #¢ACTinstance is called the
“exact address”.

The problem with virtual inheritance is that thay address is not necessarily the
same as the exact address. Thus, ev&mt er pret _cast or voi d« casts will not
help. We actually found three solutions to cope with thisiéssEach solution has its
own drawbacks and benefits, but only one is detailed in thpepa

The main idea is that the offset between they address and the exact address
will remain the same for all the instances of a particulassléve assume that C++
compilers will not generate several memory model for onewiglass). The simplest
way to calculate this offset is to compute the differenceveen an object address and
the address of aany<EXACT>reference to it. This has to be done only once per exact
class. The principle is exposed in Figure 16.

This method has two drawbacks. First, it requires a genedig tw instantiate the
EXACTclasses, for instance a default constructor. Second, ojgetgber class (not
per instance!) is kept in memory. If an object cannot be enffatly example storing
directly an array), this can be problematic. However, thethod allows the compiler
to perform good optimizations. In addition, only a modifioatof Any is necessary, a
property which is not verified with other solutions we found.

A.3 Checking Subclassing Relation

Checking if a subclass of another is possible in C++ usingptaetes. The
is_base_and_derived<T,U> tool from the Boost [7]type _traits library per-
forms such a check. Thus, it becomes possible to prevenssaftam being instantiated
if the virtual types does not satisfy the required subctagsbnstraints.

B Conditional Inheritance

Static hierarchies presented in Section 3.1 come with mm@chanisms. These pa-
rameterized hierarchies can be considered as meta-Hiessimply waiting for the
exact object type to generate real hierarchies. It is gélgesatficient for the perfor-
mance level they were designed for. In order to gain moddléxipility and genericity,
one can imagine some refinements in the way of designing secarthies. The idea
of the conditional inheritance technique is to adapt autarally the hierarchy accord-
ing to statically known factors. This is made possible by@he- two-layer evaluation
model (evaluation at compile-time and evaluation at ramei [30]. In practice, this
implies that the meta-hierarchy comes with static mechasit® discriminate on these
factors and to determine the inheritance relations. Thgspieta-hierarchy can gener-
ate different final hierarchies through these variableritduece links.

To illustrate the conditional inheritance mechanism, womuced a UML-like
symbol that we called aimheritance switchFigure 18 gives a simple use case. This

25

template <classEXACT>
struct Any
{
/I exactoffset has been computed statically
/I A good compiler can optimize this code and avoid any-+time overhead
EXACT& exact(){
return «(EXACT=x)((charx)this — exactoffset);

}

private :
static const int exactoffset ;
static const EXACT exactobj;
static const Any<EXACT>& ref_exactobj;

h

/I Initialize an empty object

/I Require a default constructor in EXACT
template <classEXACT>

const EXACT Any<EXACT>::exactobj = EXACT();

/I Upcast EXACT into ARgEXACT>
template <classEXACT>
const Any<EXACT>& Any <EXACT>::ref_exactobj = Any< EXACT>::exactobj;

/I Compute the offset
template <classEXACT>
const int Any<EXACT>::exactoffset =
(charx)(&Any <EXACT >::ref_exactobj)
— (charx)(&Any <EXACT >::exactobj);

Fig. 16.0One method to handle virtual inheritance
The offset between th&ny address and the address of EMACTclass is computed once by
using a static object. Since everything is static and cehstcompiler can optimize and remove
the cost of the subtraction.

26

1

template <bool b>
struct type.assert

{h

template <>
struct typeasseri<true >

{
typedef void ret;
h

#define ensureinheritance (Type, Base)
typedef typename
type assert<
is_baseand derived<Base, Type-::value
>:iret ensure##Type

—

template <classEXACT>
struct Image : Any<EXACT>
{

typedef typenameimagetraits< EXACT>::point.type pointtype;
/I Will not compile if pointtype is not a Point since ret
/I is not defined if the assertion fails .
ensureinheritance (pointype , Poinkpoint.type>);

h
Vi

Fig. 17. Specifying constraints on virtual types

27

example introduces an image hierarchy with a concrete elasse inheritance is con-
ditional: Speciallmage . Speciallmage is parameterized by an unsigned valis.
We want this class to inherit fronmage2d or Image3d depending on the value of
Dim. Speciallmage s inheritance is thus represented by an inheritance swiigt
ure 19 presents the corresponding C++ code. The inheritamiteh is implemented by
thelSwitch trait parameterized by the dimension value. Its specitidinan?2 (resp.3)
definesimage2d (resp.Image3d) as result type. FinallySpeciallmage<Dim> only
has to inherit fromSwitch<Dim> s result type.

The factors on which inheritance choices are made are readgssatic values. This
includes types, provided bsypedefs or parameterization, as constant integer values.
The effective factors are not necessarily directly avédlalata but can be deduced from
static pieces of information. Trait structures can then geduo perform more or less
complex information deductions. One should also note thatdiscriminative factors
must be accessible while defining the hierarchy. This insghet these factors must be
independent from the hierarchy or externally defined. Irciice, class-related factors
can be made available outside the hierarchy thanks to traittares and polymorphic
typedef s (see Section 3.6).

Image

Image2d Image3d

If DIM =2 Then
Image2d
Else If DIM = 3 Then
Image3d

Speciallmage” |~~~ 7’

Fig. 18. Simple conditional inheritance sample: UML-like desdopt

Conditional inheritance mechanisms become particulatisresting when objects
are defined by several orthogonal properties. A natural wdyandle such a modeling
problem is to design a simple sub-hierarchy per propertjotimnately, when defining
the final object, the combinatorial explosion of cases ugiaplies a multiplication of
the number of concrete classes. Figure 20 illustrates amsixin of the previous im-
age hierarchy, with more advanced conditional inheritaneehanisms. We extended
the image hierarchy with two classes gathering data-i@&lptepertiesColorimage
and GrayScalelmage . The hierarchy is now split into two parallel sub-hierasshi

28

class Image template <unsignedDim>
{ struct I1Switch;
1
+ template <>
struct ISwitch<2>
class Image2d:public Image {
{ typedef Image2d ret;
I }
It
template <>
class Image3d:public Image struct ISwitch<3>
{
1 typedef Image3d ret;
h b
template <unsignedDim>
class Speciallmage
. public ISwitch<Dim>::ret
{
I
I
Fig. 19. Simple conditional inheritance sample: C++ code
Image
Image2d Image3d Colorimage GrayScalelmage

0 GO

If DIM = 2 Then
Image2d

If DIM = Color Then l
Colorimage

Else If DIM = 3 Then
Image3d

Else If DATA = GrayScale Then
GrayScalelmage

DATA:type

Speciallmage B A

Fig. 20. Conditional inheritance: multiple orthogonal factors.

29

The first one focuses on the dimension property while therstome focuses on the
image data type. The problemis then to define images tha¢gditmension- and data-
related properties without multiplying concrete clas3dt idea is just to implement
a class templatSpeciallmage parameterized by the dimension value and the data
type. Combining conditional and multiple inheritan&peciallmage inherits auto-
matically from the relevant classes. This example intredube idea of a programming
style based on object propertiesSfeciallmage instance is only defined by its prop-
erties and the relevant inheritance relations are dedudednatically.

Finally, mixing conditional inheritance mechanism witthet classical and static
programming techniques results in powerful adaptive smhst This work in progress
has not been published yet.

30

Bibliography

[1] International standard: Programming language — C+©/I5C 14882:1998(E),
1998.

[2] G. Aigner and U. Holzle. Eliminating virtual functionalls in C++ programs.
In In the Proceedings of the 10th European Conference on Cljeéented Pro-
gramming (ECOOPR)volume 1098 of_ecture Notes in Computer Scienpages
142-167. Springer-Verlag, 1996.

[3] A. Alexandrescu.Modern C++ Design: Generic Programming and Design Pat-
terns Applied Addison-Wesley, 2001.

[4] D. F. Bacon and P. F. Sweeney. Fast static analysis of Grttral function calls.
In In the Proceedings of the ACM Conference on Object-OrieRtedgramming
Systems, Languages and Applications (OOPSpages 324—-341, 1996.

[5] J. Barton and L. NackmanScientific and engineering C++Addison-Wesley,
1994.

[6] G. Baumgartner and V. F. Russo. Implementing signatime€++. ACM Trans-
actions on Programming Languages and Systdf§l):153-187, January 1997.

[7] Boost. Boost libraries, 2003. URhttp://www.boost.org .

[8] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Mgkhe future safe for
the past: Adding genericity to the Java programming languag C. Chambers,
editor,In the Proceedings of the ACM Conference on Object-OrieRtedram-
ming Systems, Languages and Applications (OOP3tages 183-200, Vancou-
ver, BC, 1998.

[9] K. B. Bruce, A. Fiech, A. Schuett, and R. van Gent. PolyTLOA type-safe
polymorphic object-oriented languageCM Transactions on Programming Lan-
guages and Systems (ToPLAZ)(2):225-290, March 2003.

[10] K. B. Bruce, M. Odersky, and P. Wadler. A statically safternative to virtual
types. Inin the Proceedings of the 12th European Conference on Okjeented
Programming (ECOOR)volume 1445 ofLecture Notes in Computer Science
pages 523-549, Brussels, Belgium, July 1998. Springdayer

[11] K. B. Bruce, L. Petersen, and A. Fiech. Subtyping is ngfoad "match” for
object-oriented languages. limthe Proceedings of the 11th European Conference
on Object-Oriented Programming (ECOQRJpolume 1241 ofLecture Notes in
Computer Scieng@ages 104-127, Jyvaskyla, Finland, 1997. Springelayer

[12] P. S. Canning, W. R. Cook, W. L. Hill, J. C. Mitchell, and.\®. Olthoff. F-
bounded polymorphism for object-oriented programminglnithe Proceedings
of the 4th International Conference on Functional ProgramgrlLanguages and
Computer Architecture (FPCA'89pages 73—-280, London, UK, September 1989.
ACM.

[13] L. Cardelli and P. Wegner. On understanding types, dhtdraction, and poly-
morphism.Computing Surveyd.7(4):471-522, December 1985.

[14] C. Chambers, J. Dean, and D. Grove. Wholeprogram opditioin of object-
oriented languages. Technical Report UW-CSE-96-06-02yddsity of Wash-
ington, Department of Computer Science and Engineerimg 1996.

31

[15] W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance st subtyping. In
Conference Record of the 17th Annual ACM Symposium on Phascof Pro-
gramming Languages (POPLpages 125-135, San Francisco, California, USA,
January 1990. on I'a pas.

[16] J. Coplien.Curiously Recurring Template Patterin [?].

[17] K. Czarnecki and U. EiseneckeGenerative programming: Methods, Tools, and
Applications Addison-Wesley, 2000.

[18] K. Driesen and U. Holzle. The direct cost of virtual fifion calls in C++. Irin the
Proceedings of the ACM Conference on Object-Oriented Rumgning Systems,
Languages and Applications (OOPSL.S)GPLAN Notices 31(10), pages 306—
323, 1996.

[19] A. Duret-Lutz. Expression templates in Ada. limthe Proceedings of the 6th
International Conference on Reliable Software Technasgleuven, Belgium,
May 2001 (Ada-Europe)olume 2043 ofLecture Notes in Computer Science
pages 191-202. Springer-Verlag, 2001.

[20] A. Duret-Lutz, T. Géraud, and A. Demaille. Design patis for generic pro-
gramming in C++. Inin the Proceedings of the 6th USENIX Conference on
Object-Oriented Technologies and Systems (COOf&)es 189-202, San An-
tonio, Texas, USA, January-February 2001. USENIX Assamiat

[21] G. Furnish. Disambiguated glommable expression tatepl Computers in
Physics11(3):263-269, 1997.

[22] E. Gamma, R. Helm, R. Johnson, and J. VlissidBgsign patterns — Elements
of reusable object-oriented softwareProfessional Computing Series. Addison
Wesley, 1995.

[23] T. Géraud, A. Duret-Lutz, and A. Adjaoute. Design patis for generic program-
ming. In M. Devos and A. Ruping, editots, the Proceedings of the 5th European
Conference on Pattern Languages of Programs (EuroPLoRO200VK, Univ.
Verlag, Konstanz, July 2000.

[24] T. Géraud, Y. Fabre, and A. Duret-Lutz. Applying gengrogramming to image
processing. In M. Hamsa, editdn the Proceedings of the IASTED International
Conference on Applied Informatics — Symposium AdvancesiimpGter Applica-
tions pages 577-581, Innsbruck, Austria, February 2001. ACES®r

[25] J. Jarviand G. Powell. The lambda library: Lambda mgwston in C++. Inin the
Proceedings of the 2nd Workshop on Template Programmirgp(ijunction with
OOPSLA) Tampa Bay, Florida, USA, October 2001.

[26] M. Jazayeri, R. Loos, and D. Musser, editofSeneric Programming: Interna-
tional Seminar, Dagstuhl Castle, Germany, 1998, Selectgf volume 1766
of Lecture Notes in Computer Scien2000. Springer-Verlag.

[27] A. Langer. Implementing design patterns using C++ tlgs. Tutorial at the
ACM Conference on Object-Oriented Programming, Systemasgluages, and
Applications (OOPSLA), October 2000.

[28] B. Liskov, D. Curtis, M. Day, S. Ghemawhat, R. GruberJ&hnson, and A. C.
Myers. Theta reference manual. Technical Report 88, Pnagniag Methodology
Group, MIT Laboratory for Computer Science, Cambridge, NUSA, February
1995.

32

[29] B. Liskov, A. Snyder, R. Atkinson, and J. C. Schaffertbstraction mechanisms
in CLU. Communications of the ACMO0(8):564-576, August 1977.

[30] F. Maes. Program templates: Expression templatedeapf program evalua-
tion. In J. Striegnitz and K. Davis, editors the Proceedings of the Workshop
on Declarative Programming in the Context of Object-Orezht.anguages (DP-
COOL; in conjunction with PL)number FZJ-ZAM-1B-2003-10 in John von Neu-
mann Institute for Computing (NIC), Uppsala, Sweden, At@a3.

[31] B. McNamara and Y. Smaragdakis. Static interfaces in.Ch First Workshop
on C++ Template Programming, Erfurt, Germangctober 10 2000.

[32] B. Meyer. Genericity versus inheritance. Proceedings of the Conference on
Object Oriented Programming Systems Languages and Aplita{OOPSLA)
pages 391-405, Portland, OR, USA, 1986.

[33] B. Meyer. Eiffel: the LanguagePrentice Hall, 1992.

[34] S. Meyers. How non-member functions improve encaisuial8(2):44—??, Feb.
2000. ISSN 1075-2838.

[35] A. C. Myers, J. A. Bank, and B. Liskov. Parameterizedeyor java. Inin
the Proceedings of the 24th ACM Symposium on Principlesagr@mming Lan-
guages (POPL)pages 132-145, Paris, France, January 1997.

[36] N. C. Myers. Traits: a new and useful template techniq@e+ Report, 7(5):
32-35, June 1995.

[37] Olena. Olena image processing library, 2003. URtp://olena.lrde.
epita.fr

[38] oonumerics. Scientific computing in object-orientethduages, 2003. URL
http://www.oonumerics.org

[39] V. Régis-Gianas and R. Poss. On orthogonal spectadizén C++: Dealing with
efficiency and algebraic abstraction in Vaucanson. In Je@titz and K. Davis,
editors,In the Proceedings of the Parallel/High-performance Obj@ciented Sci-
entific Computing (POOSC; in conjunction with ECOQRYmber FZJ-ZAM-IB-
2003-09 in John von Neumann Institute for Computing (NICyyistadt, Ger-
many, July 2003.

[40] X. Rémy and J. Vouillon. On the (un)reality of virtualges. URLhttp:/
pauillac.inria.fr/ ~remy/work/virtual/ . March 2000.

[41] U. P. Schultz. Partial evaluation for class-based dbjgiented languages. In
Program as Data Objects: International Conference on thedrl and Applica-
tion of Cryptographic Techniques, Innsbruck, Austria, V01, Proceedings
volume 2053 ofLecture Notes in Computer Sciengmages 173-198. Springer-
Verlag, 2001.

[42] J. Siek and A. Lumsdaine. Concept checking: Bindingpegtric polymorphism
in C++. InProceedings of the First Workshop on C++ Template Prograngni
Erfurt, Germany, October 2000.

[43] Y. Smaragdakis and D. Batory. Mixin-based programmim@++. InIn the
Proceedings of the 2nd International Conference on Generaind Component-
based Software Engineering (GC$SBages 464—-478. tranSIT Verlag, Germany,
October 2000.

[44] Y. Smaragdakis and B. McNamara. FC++: Functional tdoisobject-oriented
tasks.Software - Practice and Experienc22(10):1015-1033, August 2002.

33

[45] J. Smith. C++ & multi-methodsACCU spring 2003 conferenc2003.

[46] A. Stepanov, M. Lee, and D. MussefThe C++ Standard Template Library
Prentice-Hall, 2000.

[47] J. Striegnitzand S. A. Smith. An expression templataralambda function. Im
the Proceedings of the 1st Workshop on Template Programififigrt, Germany,

October 2000.

[48] B. Stroustrup.The Design and Evolution of C++Addison-Wesley, 1994.

[49] V. Surazhsky and J. Y. Gil. Type-safe covariance in C+2002.
URL http://www.cs.technion.ac.il/ ~yogi/Courses/
CS-Scientific-Writing/examples/paper/main.pdf . Unpub-
lished.

[50] K. K. Thorup. Genericity in Java with virtual types. Rroceedings of the 11th
European Conference on Object-Oriented Programming (E€D@lume 1241
of Lecture Notes in Computer Scienpages 444—-471, Jyvaskyla, Finland, June
1997. Springer-Verlag.

[51] K. K. Thorup and M. Torgersen. Unifying genericity: Cbming the bene-
fits of virtual types and parameterized classes. In R. Guoaiyaditor,In the
Proceedings of the 13th European Conference on Objectr@ieProgramming
(ECOOP) volume 1628 ol ecture Notes in Computer Sciengages 186—-204,
Lisbon, Portugal, June 1999. Springer-Verlag.

[52] D. Vandevoorde and N. M. JosuttisC++ Templates: The Complete Guide
Addison-Wesley, 2003.

[53] T. Veldhuizen.Expression Templatepages 475—-487. Ir?[.

[54] T. L. Veldhuizen. Techniques for scientific C++, Augu€99. URL http:
/lextreme.indiana.edu/ ~tveldhui/papers/techniques/

[55] T. L. Veldhuizen and A. Lumsdaine. Guaranteed optiridza Proving nuIIspace
properties of compilers. IiStatic Analysis, 9th International Symposium, SAS
2002, Madrid, Spain, September 17-20, 2002, Proceedirajsme 2477 otec-
ture Notes in Computer Sciengeges 263-277. Springer-Verlag, 2002.

[56] Xt. A bundle of program transformation tools. Availabbn the Internet, 2003.
URL http://www.program-transformation.org/xt

[57] O. Zendra, D. Colnet, and S. Collin. Efficient DynamlcsDatch without Virtual
Function Tables. The SmallEiffel Compiler. In the Proceedings of the 12th
ACM Conference on Object-Oriented Programming Systenmsgliages and Ap-
plications (OOPSLA)olume 32 oissue 10pages 125-141, Athlanta, GA, USA,
October 1997.

34

Object-Model Independence via Code Implants

Michat Cierniak, Neal Glew, Spyridon Triantafylli, Marsha Eng,
Brian Lewig’, and James Stichnath

1 Microsoft Corporation
2 Microprocessor Technology Lab, Intel Corporation
3 Department of Computer Science, Princeton University

Abstract. Managed runtime environments, such as those that execwdeoda
CLI programs, require close cooperation between the Virhzchine (VM) and
user code, which is usually compiled by a just-in-time cderpiJIT). Although
operations such as field access, virtual method dispatdtyae casting depend
on VM data structures, having user code call the VM for thgmzations is very
inefficient. Thus, most current JITs directly generate cfmtethese operations
based on assumptions about the VM’s implementation. Atjhdhis design of-
fers good performance, it locks the VM and the JIT togethéictvmakes mod-
ifications difficult. In addition, it is hard to experimenttinew algorithms and
strategies, which may ultimately hurt performance. Finaktending a runtime
platform to support new programming paradigms may reqémeplementing
the entire system.

We propose a mechanism that allows VMs to implant code irnfecdmpiled
code. This mechanism allows a strict interface betweenlthant the VM with-
out sacrificing performance. Among other things, it isdatest programming-
paradigm aspects within the VM, thus greatly facilitatingltiparadigm support.
This paper presents our system for code implants, givesranesaluation of it,
and describes how it could be used to implement several gnoging-paradigm
extensions to Java with relatively little implementatidfog.

1 Introduction

The Open Runtime PlatfornfORP [6, 1]) is a high-performance implementation of
a virtual machine for Jafg15] and the Common Language Infrastructure (CLI [10]).
ORP supports Java and CLI with essentially the same impl&tien, with only subsets
of the implementation being Java or CLI specific. This duglpsart of both CLI and
Javais, as far as we know, unique among virtual machinelsdtaises the question of
whether we can extend ORP to support other programming iggnad

ORP uses interfaces to partition its implementation intesd well-defined mod-
ules: the core virtual machine (VM), the just-in-time cofepi(JIT), and the garbage
collector (GC). ORP’s modular design facilitates expenagon, and allows using
multiple JIT and GC implementations with the same core VMdate we have used
seven different JITs (see,g, [2, 7, 5, 1]) and five different GCs.

However, portions of ORP’s current interfaces sacrificarmli@ess for performance.
For instance, the JIT can implement a type-inclusion tdbeeias a call to the VM

Other brands and names are the property of their respeativers.

35

or as an inlined instruction sequence. While a call-basgdesgce is independent of
the VM'’s implementation, its performance is slower. Anni@d sequence can be very
fast .9, through the use of Cohen’s type displays [8]), but it reb@sspecific VM
data structures and may be incorrect if the VM data strustahange. Furthermore,
some code sequences are so performance-sensitive thatvtheo®s not provide a
function to call, and instead the JIT must rely on specifiadatuctures. Virtual method
dispatch is an example. ORP uses vtables for virtual metligghtth, and every JIT
must understand this implementation and generate vtaseeicode.

Many code sequences assume that ORP only supports sifiglgtamce languages
like Java and CLI, and we never considered abstracting tepeences. For example,
an upcast is a no-op in ORP, but common implementations gliages with multiple
inheritance €.g, C++) require that an upcast add an offset to the object poiSimi-
larly, for a field access in Java, the JIT can generate thesaddf the field by adding
a compile-time constant to the object pointer. In languagiéls dependent multiple
inheritance, an indirection through @&rdex tablemay be required (see,g, Gruneet
al. [13, Section 6.2.9.6]).

For ORP to support other languages such as Python or Scheamgowd have to
change ORP’s object model to include, for instance, matipheritance and possibly
multi-methods. This would make its current use of vtables pe displays inappro-
priate, and would make today’s ORP JITs generate incoroets.c

We would also like to experiment with supporting new progmaimg paradigms in
ORP. Due to the broad acceptance of the Java language, Isésemeextensions have
been proposed to support additional programming paradihese extensions include
both standard [14] and dynamic [4, 17] aspect-oriented namogning, multiple inher-
itance, mixin-type inheritance [11], and aspects of funti programming [16, 20].
With the exception of standard aspect-oriented prograrmgnonly proof-of-concept
implementations exist for the other extensions. More séalimplementations do not
exist because of the great difficult of extending most axistlava systems. Even to-
day’s ORP would require changes to multiple componentsicing the JITs to support
many of these extensions.

This paper proposes a system for the VM to specify, in a CRIgpiendent fashion,
low-level instruction sequencest(ibg that the JIT can then inline into the code it emits.
This system, which includes théL language, simplifies the generation of the intricate
code sequences needed to implement various languageiopsiite a virtual method
dispatch, a type-inclusion test, or a type cast. We argueittitan also support new
object models and programming paradigms. It abstracts ae&#aijls that depend on
the object model or programming paradigm, and make JITviobk to the details
of their implementation. We further argue that these beneifill be possible without
sacrificing the performance of today’s ORP. It has the aolditi benefit of simplifying
maintenance for multiple CPU architectures.

This paper presents our results to date. We describelthnguage in Section 2.
To make our proposal concrete, we describe in some detaitdvonplement one oper-
ation, downcasts, usingL in Section 3. We discuss how the VM and JIT interoperate
to inline this code sequence into JIT-generated code, awbpt the results of an exper-
iment to evaluate the performance impact from inlining thpgration. Section 4 gives

36

an overview of using this system for adding new programmarggigms to ORP with
only modest implementation effort.

2 LIL

We designed a language calletl® to express low-level code to be inlined in a CPU-
independent way. This section gives a brief overviewlbf
Here is an example oflalL stub that invokes a virtual method on an object.

entry O:managed:ref,g4,f4:91,;
locals 1;

Id 10,[i0+0:pint];

Id 10,[10+32:pint];

in2out managed:g1;

call 10;

ret;

This stub is compiled into code that acts like a function. $hié’sentry line states
that it is called using the managed-code calling converttien the VM-specified con-
vention for calling JIT-generated code) with three argutseand that it returns a result.
The arguments are of typef (reference to an object in the heag¥, (32-bit general-
purpose value), anfdl (32-bit floating-point value), and the result is of typ#e (8-bit
general-purpose value). (The “0” reflects a low-level innpdatation detail that is be-

yond the scope of this paper.) The rest of the stub consisteafistructions that are to
be executed when the stub is called.

— Thelocals 1; instruction declares a single local variable.

— Theld 10,[i0+0:pint] instruction loads @int (pointer-sized general pur-
pose value, often used for pointers that are not objectsarh#ap) from the ad-
dress given by0 (the first argument) intd0 (the first local)—in this example,
this pointer points to the vtable for the object whose metldmking invoked.

— The secondd instruction loads @int from the address given B9 plus 32—in
this example, this is the entry in the vtable for the methaddpavoked.

— The third instructioni6i2out managed:gl) sets up for a call; in particular, it
copies the arguments into an output area, and declareshinaiatl will use the
managed-code calling convention and retugianto the implicit variable .

— Thecall 10 instruction calls the address i@ and sets the variable to the
value returned.

— The finalret instruction returns. The current value ofis the value returned by
the stub.

Notice that the stub implicitly makes a tail calllL has an explicit way to make a
tail call that is optimized by the code generator. The abbwe sould also be expressed
as:

5 LIL stands for Low-level Intermediate Language, and its proiaiion suggests its “little’ness
or lightweight nature.

37

entry O:managed:ref,g4,f4:91;
locals 1;

Id 10,[i0:pint+0:pint];

Id 10,[10+32:pint];

tailcall 10;

All LIL variables and operations are typed by a simple type systeatype system
makes just enough distinctions to know the width of valueswhere they should be
placed in a given calling convention. For example, the tyysesn distinguishes be-
tween floating-point and general-purpose values but netdest signed and unsigned.
In addition, the type system distinguishes various kindpahters (e.g., pointers to
heap objects versus pointers to fixed VM data structurespuse in the future we may
want theLIL code generator to be able to enumerate GC rootdloactivation frames.

A LIL stub executes with an activation frame on the stack. Coneélpt this ac-
tivation frame is divided into a number of areas that can varsize and type across
the execution of the stub. For our purposes, the areas aumsiripcals, outputs, and
return. The inputs initially hold the arguments parsed leydaller, but they can change
by assignment. Their number and type is fixed across the Bheblocals hold values
local to the stub. Their number is determinedlbgals instructions, and their types
are determined by a simple flow analysis. The outputs holdegpassed to functions
called by the stub. Their number and types are determinedZgut andout in-
structions. These instructions set up an output area aighasshe outputs, and then a
call instruction performs the actual call. The return is a singdation that is present
following acall instruction or whenever an assignment is made to it; its iy peter-
mined by a flow analysis. Each input, local, output, and reisiaLIL variable, and are
referred to using the namés i1 ,...,10 ,11 ,...,00,01, ..., andr, respectively.

LIL’s instructions include arithmetic operations, loadsresp conditional and un-
conditional jumps, calls, and returns. They are summaiiizdéble 1. An operand
is either aLIL variable or an immediate value. The address part of loade,stmd
increment instructions can include a base variable, a d¢atkex variable, and an im-
mediate offset; the scale can be one, two, four, or eights Tdrimat was chosen to
easily take advantage of instructions and addressing mafdéae 1A32 architecture,
the Itaniun®) Processor Family (IPF) architecture, and other architestd’ he address
also includes the type of the value being loaded, storechavemented. The conditions
in a conditional jump are standard comparisons (equal, qoale less, etc.) between
two operands.

LIL also includes some constructs specific to our virtual magtsach as access-
ing thread-local data for synchronization or object altawra However, these do not
concern this paper and will not be discussed further.

The LIL system has two parts: a parser and a code generator. The tm@se a
C string as input and produces an intermediate represemtdR) of LIL instructions.
The parser includesgintf -like mechanism for injecting runtime constants such as
addresses of functions or fixed VM data structures. The cedergtor takes thdlL IR
as input and produces machine instructions for a partieutdritecture.

38

Table 1.LIL General-Purpose Instructions

Category LIL syntax Description
Declarations label;
locals n;
in2out cc:rettype;
out sig;
Arithmetic vV = 0 Move
V = uop O; Unary
v = 0l op 02; Binary
Memory access Id v, addr; Load
st addr, o; Store
inc addr; Increment
Calls call o; Normal call
tailcall o; Tail call
call.noret o; Call that does not return
ret;
Branches jc cond, label; Conditional branch
j label; Unconditional branch

3 Subtype Tests

To illustrate how the VM can usklL to insulate JITs from details of the object model
and type data structures, this section considers subtgfse Both Java and CLI include
bytecodes likeeheckcast andinstanceof that test whether an object is in a par-
ticular type. The typical implementation dereferencesdhbgect to obtain its class’s
data structure, and then tests whether this class is a sulfythe target type. The
naive implementation of this subtype test is to traversestigss, interface, and array
element-type pointers searching for the target type. Itrash ORP uses Cohen’s type
display technique [8]. In practice, this implementatiomigch faster than the naive im-
plementation, and improves overall application perforoeaf3]—even more so when
the JIT inlines the fast path into its generated code. Howélve code to be inlined is
heavily dependent upon the details of Cohen’s techniquédtendetails of the VM's
data structures. This example is an ideal case for showingkinowledge can be iso-
lated in the VM without sacrificing performance.

3.1 Cohen’s Type Displays

The basic idea of Cohen’s type displays is to store a tablecéstors in the type data
structures. In ORP, we store a fixed siz&AXDEPTH- 1) table in the vtable of each
class. For a class at depth if d < MAXDEPTH then the table contains the class’s
ancestors at level two through and thenNULLs; otherwise, the table contains the
class’s ancestors at level two througyAXDEPTH Note that every class’s level-one
ancestor igava.lang.Object (or System.Object in CLI), so we do not need
to store this class. Each entry points to the class datatsteutor the corresponding

39

class (not to the vtable of that class). To test if a classesprted by vtable is a
subtype of another class represented by class data sguctORP does the following.
If ¢’s depth is one (meaningis java.lang.Object), the test succeeds. Otherwise
if ¢'s depthd is less than or equal tIAXDEPTH ORP compares entry — 1 of v’s
ancestor table witl, and this is the result of the subtype test. Otherwise, ORP fa
back to the naive implementation, which is also used if thgetype is an interface
or array type. Since the performance-critical cases aré¢ oftes class types within the
maximum depth, most of the time a short sequence of instmEis executed.

3.2 Implementation

ORP offers runtime helper functions for subtype test oj@nat and the JIT may gen-
erate calls to the appropriate helper. Ebeckcast , the helper function takes two
arguments: the object, and the class data structure foatbetttype. To call this helper
function, the JIT emits instructions corresponding to thieofving simpleLIL stub:

entry 0:managed:ref,pint:ref;
tailcall checkcast_helper;

Since the JIT knows the target type at compile time, the Jidlccobtain better
performance by inlining a fast path sequence customizeuetterrget type. To achieve
this inlining in ORP without_IL, the JIT would need to know that Cohen’s type dis-
plays are being used, the location of the vtable within dsjeand the location of the
ancestor table in vtables. If any of these details change, tihe JIT must be changed.
If the object model is changed or Cohen’s algorithm is regdalby another, perhaps
to accommodate multiple inheritance, then the JIT must gaatcordingly. Prior to
developind_IL, ORP did have a JIT that did this customized inlining, so weadie to
compare its performance against the version.

To address both the performance issue and the softwaressngig issue, we mod-
ified ORP to us&IL to communicate information from the VM to the JIT without mak
ing the JIT dependent on this information. lebleckcast |, this works as follows: The
JIT requests from the VM the runtime helper function ¢ébeckcast , and passes at
JIT time the class data structure for the target type. The ¥Maptionally return &IL
stub, consisting of a customized sequence for that typaliteeiinto the JIT-generated
code. If the type is a class type of less than maximal depthl.ith stub will be the
following (whered is the depthg is the class data structure for the typéy is the
offset of the ancestor table within a vtable, dhtbw _class _cast _exception is
a helper function that throws an appropriate exception):

entry 0:managed:ref,pint:ref;
jc i0!'=0,nonnull;

r=io;

ret;

:nonnull;

locals 1;

Id 10,[i0+0:pint];

Id 10,[I0+ato+4 * (d-1):pint];

40

jc 10!=c,failed;

r=io;

ret;

failed;

out managed::void;

call.noret throw_class_cast_exception;

(Note that the stub is a two-argument function even thoughétialized on its second
argument, and thatto+4 *(d-1) is actually a constant computed by the VM and is
not aLIL expression.) The JIT inlines and convertstlthie stub into its own internal IR.
For typical compiler IRs, this should be straightforward.

In this new implementation, the JIT is not aware that the fppkision tests are im-
plemented with type displays. Therefore, if the VM were niiedito support multiple
inheritance, the same JIT would still work for Java progravitsout any modifications
and with no performance penalty. A new implementation caigd a technique more
suitable for multiple inheritance like the one described/igk et al.[19].

The scheme achieves our goal: it allows us to make perforengpiimizations with-
out making the JIT dependent upon any VM information. All th€ needs to under-
stand isLIL and how to inline it. The next section evaluates the resyjti@rformance,
showing both that thelL version performs similarly to the customized JIT versiod an
that both versions of the JIT achieve speedup over the un@ad call version.

3.3 Performance evaluation

As an experiment, we modified ORP’s high-performance O3 dlificlude an ad-hoc
runtime helper inlining system. This includes bothla inliner and custom versions
of checkcast andinstanceof . The custom version requires the JIT to have spe-
cific knowledge of the type display scheme including detziiihe VM data structures;
theLlIL version insulates the JIT from all such details. This seatiompares the perfor-
mance of both versions of inlining with doing no inlining. \Wse the SPEC JVM98 [18]
benchmark to perform the comparisdiihe measurements are taken on a four proces-
sor 2.0 GHz InteR) Xeon™ machine with HyperThreading disabled, with 4 GB of
RAM, and a heap size of 96 MB.

The results appear in Figure 1. The baseline does no inliirigelper functions;
that is, JIT-generated code calls helper functions in the(\idMvever, these VM helper
functions do have a fast path using the type displays). Tagtgshows the performance
improvement of the two versions of inlining over this baseli

For the most part, there are small but significant perforraamprovements from
inlining the helper functions. The gains from both schemesia the same order of
magnitude, ranging from no improvement on Jack and 5.6% ofobéd-hoc inlining,
and less than 1% on Compress and 6.3% on DhLfarinlining. These results are
encouraging and suggest that code implants offer good ipeaface along with their
other benefits.

® We use the SPEC benchmarks only as benchmarks to comparertbemance of the various
techniques within our own VM. We are not using them to commaneVM to any other VM
and are not publishing SPEC metrics of any kind.

41

7.00

6.00

5.00

2.00
1.0 :L
0.00 - T T T T

Compress Jess Db Javac Mpegaudio Jack

>
o
S

Dad-hoc inlining
ELIL inlining

% Performance Gain

w
o
S

S

Fig. 1. Performance comparison of inlining on SPEC JVM98.

4 Multiparadigm Support

This section shows howlL code implants can support extensions to ORP’s program-
ming paradigm. As ORP stands today it is not suited for sutérnesions because some
operations are implemented through ad-hoc JIT-generatgeesices. In particular, field
access, method invocation, downcasts, and upcasts arenrapted by the JIT. The first
step towards extending ORP’s programming paradigms igjuirethese operations be
implemented with_IL code implants. Once this is in place, the modifications negi
for the extensions discussed in this section are to the Vid statictures and to tHdlL
that the VM provides to the JITs. The JIT implementation igédy unaffected. In our
experience, the JIT is often the most complex part of theesysind any changes to
it are difficult. Therefore, limiting the changes neededupsrt a new programming
paradigm to the core VM greatly simplifies the extension’pliementation.

4.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) has been gaining poippia recent years. Typ-
ically AOP extensions to Java are implemented without atayges to the JVM imple-
mentation and generate standard class files. AspectJ [§lapaar example of such a
system.

A new class of AOP applications is emerging that require dyinaAOP [4, 17]:
the ability to add, modify and remove aspects at runtime. tgpécal scenario, the
source code is not available and and it cannot be rewrittem iAOP version of Java.

42

Instead, the system must modify an existing applicatiore phint cuts needed for
dynamic AOP usually include method invocations and (somet) field accesses. The
approaches used in prior work can be grouped into three aatsg

— Use the debugger interface to intercept method invocatibims downside of this
approach is poor performance and a limited set of point ctagable €.9, field
accesses may not be available).

— Modify the bytecodes via a custom class loader. While thiglé@mentation is flex-
ible, its performance is a problem since each potentialtpmib must be instru-
mented and a check must be performed at runtime to deterfrargivien point cut
is active. Bytecode instrumentation of every point cut e made as cheap as
custom solutions.

— Modify the JIT to emit appropriate code. This approach affee best performance
but it requires potentially cumbersome modifications tolfie

The use oL IL allows dynamic AOP to be implemented with the same perfooaan
as the latter solution, but without the need to modify the Jifie VM can use data
structures to keep track of dynamic aspects. These datdigtes can then be consulted
to generate the appropridtél sequences for each method invocation and field access.

4.2 Multiple Inheritance and Mixins

Changing the type inheritance model affects type instdotiatype casts, field ac-
cesses, and method invocation. Since all these actionsrgalernented through im-
plantedLIL sequences, any changes needed to support a new inheritaaiet ane

confined within the VM. The rest of this section describes moultiple inheritance,
mixins, and extensible objects can be supported usingybktem.

Classic Multiple Inheritance The easiest way to implement multiple inheritance is
the one followed by most C++ compilers. That is, each basssdlsstance begins at
a certain offset from the start of the object. Each base dtetance also has its own
vtable pointer, which differs from the object’s vtable pinby a certain offset.f this
implementation is followed, then only the stubs for typetsam®ed to change. Instead
of just returning its argument, an upcast stub would now la®kollows:

entry O:managed:ref:ref;
r=i0+BASE_OFF;
ret;

whereBASE OFFis the offset of the requested base class’s instance witkiobject.
Downcast stubs must change in a similar but opposite way.

" This implementation slightly complicates garbage coitegtsince references now do not nec-

essarily point to the start of an allocated object. This f@wbcan be solved, although the
details are too technical to include here.

43

Mixins As explained by Flatet al. [11], implementing mixin-style inheritance may
require “boxing” some references. That is, a mixin-typeémence is implemented as
a pointer to a structure that contains a pointer to an actoiecbas well as field and

method translation tables (and possibly other informatidhese tables map field and
method names into the offsets within the object and vtaldpaetively. Casts from

normal class types to a mixin type must create the boxedaedte;, whereas casts from
mixin types to a normal class type must retrieve the undeglypbject and discard the
outer structure. Field accesses and method invocatiomsghmixin references require
looking up the field or method name in the translation tatildsarly the VM can make

LIL stubs for casts, field access, and method invocation thatritsis scheme; we omit

the details.

Extensible Objects Some object-oriented languages such as Python allow thieaise
dynamically add fields to an object at runtime. A simple innpéatation has a list of
dynamic field names and values in each object. If a JIT reguefield not statically
declared in a type, then the VM generates a stub to searclytteardc field list of the
object. If a requested field is not found in the dynamic fietd, lthe stub can either
throw an exception or create the field depending upon theateEinguage semantics.
The VM can also provide the JIT withlL stubs for dynamic field addition operations.
Clearly, optimizations of this simple scheme are also esgibde usingd_IL stubs.

4.3 Functional Programming

It is well known that functions, especially first-class ftinos in functional program-
ming languages, are equivalent to objects with a single atefh2]. Function appli-
cation becomes invocation of the single method. The VM casgmt functions and
function types to a Java JIT as if they were objects. The nietincation sequence
shown in Section 2 results in two loads and a call for a fumctpplication. Typical
implementations of functional programming languages lag one load and a call.
The extra load could degrade performance. To avoid it, theddMld store the code
address directly in the function, say immediately aftervtable® Then if a Java JIT
requests a virtual dispatch on a function type, the VM caregae a_IL sequence that
loads the code pointer directly from the function, such asftfiowing (for a function
of no arguments or returns):

entry 0:managed:ref:void;
locals 1;

Id 10,[i0+4:pint];

tailcall 10;

Functional programming languages also have features tikgrprphism, discrim-
inated unions, and lazy evaluation that are quite diffefiesth typical object-oriented

8 In typical implementations of functional programming, éaés no vtable, but instead there is
a header word used by the garbage collector. In ORP, therehisader word, and instead the
information contained in the header word is stored in theletar hus the space requirements
are the same.

44

features. For example, polymorphism in these functionaamming languages is re-
lated to generics in object-oriented languages. Thesariesamight need different ob-

ject models, field access sequences, and method invocatjpreisces. As an example
of the latter, thunk creation and forcing for lazy evaluatamuld be hidden in method

invocation code that crosses from Java to lazy functiondéctVe speculate that these
differences could be hidden from the JIT usidg.

5 Conclusion

Extending existing virtual machines to support new objeotlals and programming
paradigms is difficult because knowledge about the objectatis spread across many
components and modules. Such knowledge includes how fiekkaes, method invo-
cations, down casts, and up casts should be implementesl p@bier has shown how
to address this problem without sacrificing performance 3dlution is to concentrate
knowledge of the object model in the core VM component, angsecode implants to
inline performance critical operations into JIT-genedatede and other components.
Then implementing new object models or programming paradigequires changes to
a small part of the system only.

We originally designed.IL to provide CPU-independence and better maintainabil-
ity of stubs within ORP. We were pleasantly surprised wherr@adised that it could
also be used to implement a code implant system and thusvadieéter modularity for
ORP with the same performance.

While we have investigated code implants éveckcast andinstanceof in
ORP, much more work remains before ORP will be a platform faitiparadigm ex-
periments. Many other opportunities remain for the use dedmplants. Future work
will explore these possibilities.

45

Bibliography

[1] A.-R. Adl-Tabatabai, J. Bharadwaj, D.-Y. Chen, A. Ghuio, V. Menon, B. Mur-
phy, M. Serrano, and T. Shpeisman. The StarJIT Compiler: Adbyic Com-
piler for Managed Runtime Environmentiktel Technology Journal7(1), Feb-
ruary 2003. Available ahttp://intel.com/technology/itj/2003/
volume07issue0l/art02 _starjit/p01 _abstract.htm

[2] A.-R. AdI-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. P&Hh, and J. Stichnoth.
Fast, Effective Code Generation in a Just-In-Time Java GlemProceedings of
the SIGPLAN '98 Conference on Programming Language Degignaplemen-
tation, June 1998.

[3] B. Alpern, A. Cocchi, and D. Grove. Dynamic Type CheckinglalapefoPro-
ceedings of the Java Virtual Machine Research and Techg@ggposium (JVM
'01), April 2001.

[4] J. Baker and W. Hsieh. Runtime Aspect Weaving Througha@sigramming.
Proceedings of the International Conference on Aspecefed Software Devel-
opmentApril 2002.

[5] A. Bik, M. Girkar, and M. Haghighat. Experiences with JAVJIT Optimization.
International Workshop on Innovative Architecture for &t Generation High-
Performance Processors and Syste@stober 1998.

[6] M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth. p&h Run-
time Platform: A Flexible High-Performance Managed RumtinEnvi-
ronment. Intel Technology Journal7(1), February 2003. Available at
http://intel.com/technology/itj/2003/volume07issue0 1/
art0O1 _orp/p01 _abstract.htm

[7]1 M. Cierniak, G.-Y. Lueh, and J. Stichnoth. Practicingd0: Java Under Dynamic
Optimizations. Proceedings of the SIGPLAN 00 Conference on Programming
Language Design and Implementatjdnne 2000.

[8] N. H. Cohen. Type-extension type test can be performesbirstant time ACM
Transactions on Programming Languages and Syst&8{g), October 1991.

[9] Eclipse.org. AspectJ Project, 2003. Availablehdtp://eclipse.org/

aspect]
[10] ECMA. Common Language Infrastructure ECMA, 2002. Available
at http://www.ecma-international.org/publications/

Standards/ecma-335.htm

[11] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classad aixins. InThe 25TH
ACM SIGPLAN-SIGACT Symposium on Principles of Programrargyuages,
San Diego, Californiapages 171-183, New York, NY, 1998.

[12] N. Glew. Object closure conversion. In A. Gordon and Ats? editors,3rd
International Workshop on Higher-Order Operational Teirfues in Semanti¢cs
volume 26 ofElectronic Notes in Theoretical Computer Scienearis, France,
Sept. 1999. Elsevier. Available attp://www.elsevier.nl/locate/
entcs/volume26.html

46

[13] D. Grune, H. E. Bal, C. J. H. Jacobs, and K. G. Langendong®dern Compiler
Design Wiley, 2000.

[14] G.Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, JrRgnd W. G. Griswold. An
overview of AspectJLecture Notes in Computer Scien@@72:327-355, 2001.

[15] T. Lindholm and F. Yellin.The Java Virtual Machine Specification, Second Edi-
tion. Addison-Wesley, 1999.

[16] M. Odersky and P. Wadler. Pizza into Java: Translatirepty into practice. In
Proceedings of the 24th ACM Symposium on Principles of Rrogning Lan-
guagesParis, France, Jan. 1997.

[17] A. Popovici, G. Alonso, and T.Gross. Just In Time AspedEfficient Dy-
namic Weaving for JavaProceedings of the International Conference on Aspect-
Oriented Software DevelopmeMarch 2003.

[18] Standard Performance Evaluation Corporation. SPE@B/ 1998. Seéttp:
[lwww.spec.org/jvm98

[19] J. Vitek, R. N. Horspool, and A. Krall. Efficient type ihusion tests. ACM SIG-
PLAN Conference on Object-oriented Programming Systeargjliages and Ap-
plications October 1997.

[20] D. Wakeling. Compiling lazy functional programs foretljava virtual machine.
Journal of Functional Programmin@(6), November 1999.

47

48

The ConS/* Programming Languages

Matthias M. Holzl

hoelzl@informatik.uni-muenchen.de
Institut fir Informatik
Ludwig-Maximilians Universitat Miinchen
Oettingenstralle 67
80538 Miinchen

Abstract. The ConS/* family of languages extends object-functioaabuages
like Common Lisp, Dylan or Scheme with facilities for “noetérministic” com-

putation and constraint solving. Integration of constragiving is achieved with-
out changing the evaluation mechanism of the underlying lsyuage; ConS/*
achieves close integration between the base language asttaiat solving by
providing parametric backtracking, first-class constsaamd generic built-in op-
erators.

1 Introduction

Languages that offer a single programming paradigm oftere asimple conceptual
model and nice theoretical properties. On the other hangeréance shows that no
single programming paradigm is suitable to solve all prograng problems with equal
conciseness and clarity.

Currently, many programs are written in object orientedjlaages since these lan-
guages seem to offer a good compromise for most applicateasaFor certain appli-
cation domains, however, other paradigms provide sigmifiagdvantages. For example,
Constraint Logic Programming (CLP) is an established datilee programming para-
digm that is very well suited to many kinds of optimizatiommplems.

It is therefore not surprising that various languages trintegrate more conven-
tional programming paradigms with constraint-solversedéhlanguages can roughly
be divided into two groups. Languages in the first group mpotié argument-passing
mechanism of function or method applications: If a funci®applied to an argument
which is not completely determined, the computation eithepends (the so-called
residuationprinciple) or non-deterministically assigns a value tohsgable (arrow-
ing). Most of these languages are based on a functional corextompleCurry [2]
or Babel[10]. Languages in the second group add constraint-solextgnsions as a
sub-language to a functional or object oriented languabés dpproach can be found
in non-deterministic Lisf12, 13], as implemented by tH&creamempackage [14], the
programming languagalice [18, 19], theJava Constraint Kit (JCK)1] or the the
ILOG SolverandOptimization Suit@roducts [6, 5].

The two groups of languages differ markedly in the prograngystyle that they
support naturally. In general, languages in the first gragiptly integrate constraint
solving into their base language. In general this leadsriguages that offer seamless

49

integration between the different programming paradigrhe. disadvantage of this ap-
proach is that the complex evaluation model of logic prograng languages is carried
over into the base language and that many features thatseetid to object oriented
languages (e.g., mutation) are difficult to support. Lamgsan the second group re-
quire the programmer to chose for each subproblem of theanogrhether to solve it
in the base language or in the constraint sublanguage. rtieehand they often offer
more possibilities for compiler optimization and, more wrantly, a simpler execution
model.

We present th&€onS/*family of languages. The languages in @enS/*family
are based on constraint-functional languages; they rétaisimple argument-passing
and evaluation model of object-oriented or eager functitareguages, but integrate
backtracking and constraint-solving as tightly as lan@sdzased on residuation or nar-
rowing. This is achieved by addirfgon-deterministic computation®” and first-class
constraintsto the language, and by extending the built-in special-ajpes and func-
tions to handle constraints in the appropriate manner.eSinest facilities inConS/*
offer ameta-object protocdP], they can be customized and extended by the user. The
language facilities described in this paper can be addeiffeveht object-oriented lan-
guages; for concreteness we focusGamS/Schemia the rest of the paper.

This paper is organized as follows: In the next section weqrean introductory
example that shows how the new features can be used to “ethescomputation of
a program. In the third section we give a short introductmthe core language and its
object system. We then show very briefly how an object-oe@ptrotocol can be used to
specify search and solution strategies, and how the samzhsptocol can be used as
meta-object protocol to control the backtracking behawsfdhe language. We proceed
to describe how most “built-in” facilities can be expressisthg generic-functions and
how this approach leads to a natural integration of congsanto the language.

2 An Example Program

To illustrate the constraint mechanism we show how an exapnolgram that is written
in straightforward object oriented style can be used to agmnput arguments that
result in a desired outcome of the program. The program isefeddafter an example
in [11]; a constraint-functional translation that is closethe original is given in [4]. It
computes the balandg of a mortgage with principaP, after T' years, if the interest
rate isI and the annual repaymentfs Figure 1 shows a Java class that computes the
balance of the mortgage, Figure 2 shows the correspor@ing/Schemgarogram.
This example shows that there are several differences bat@enS/Schemand
Java. The most obvious difference is tl@inS/Schemis written in prefix notation
whereas Java uses a more conventional algebraic (infixjusyAnother difference is
thatinConS/Schemmethods do not “belong to” classes and have no imghdgargu-
ment. Instance variables are usually accessed by caitigrmethods. In principle the

! The term “non-deterministic” computation is actually a ntmer since the computation pro-

ceeds in a completely determined fashion. Since this usagenimon in the CPL-literature
we also use it in this paper.

50

class Mortgage {
private double principal = 10000.0;
private double interestRate = 0.05;
private double repayment = 1000.0;

double balance(int time) {
if (time >= 0) {
double result = principal;

for (int i = 0; i < time; i++) {
result += result * interestRate - repayment;
}
return result;
}
else

throw(new RuntimeException("Negative time?"));

Fig. 1. Java class for the mortgage example.

(define-class <mortgage> (<object>)
((principal :init-keyword :principal
;initform 10000.0
:accessor principal)
(interest-rate :init-keyword :interest-rate
:initform 0.05
:accessor interest-rate)
(repayment :init-keyword :repayment
sinitform 1000.0
:accessor repayment)))

(define-method balance ((mortgage <mortgage>) time)
(if (>= time 0)
(let ((result (principal mortgage)))
(dotimes (i time)
(inc! result (- (* result (interest-rate mortgage))
(repayment mortgage))))
result))
(error "Negative time?"))

Fig. 2. ConS/Schemgrogram for the mortgage example.

51

techniques developed in this paper could be implementedénsion of Java in which
some constraints of the type system are relaxed.

It is clear that the programs are semantically equivalenthBprograms define a
class that contains instance variables for the principégréest rate and repayment of
the mortgage and a methbadlancethat computes the balance of the mortgage after a
certain number of years.

If we call the ConS/Schemtinction balance with known quantities for its ar-
guments, say a mortgage wiglrincipal = 100, interest-rate = 0.05 and
repayment = 10, andtime = 1 it will compute the balance after one year. The op-
erational behavior of the program is similar to the Java mogBalance evaluates
theterm(>= time 0) withtime bound tol. This resultsin the valugue , there-
fore evaluation proceeds with the first clause ofithestatement. This clause binds the
variableresult to the value of therincipal instance variable of the mortgage. It
then binds the loop variableto 0 and evaluates the loop body. After the first evaluation
of the body, the condition of the loop is tested again; thisetithe test fails, therefore
evaluation continues after the loop and returns the valuesafit to the caller.

There is one important difference between both progranesdiere and the original
constraint logic version in [11] (apart from the obvious @®atic one): The constraint
program describes i@lation between its arguments while the Java &ahS/Scheme
programs computefainctionfrom their arguments to results.

We can therefore use the constraint-logic version of thgnamm to answer other
guestions than the balance given a mortgage and a timerlgxample, we want to
know the time we have to wait until we have a balanc@®fwhen starting with a
principal of100, an interest rate df.05, and a repayment df0, the Java program is no
longer able to compute an answer while the constraint progmaswersl” = 1. In the
following paragraphs we show how tl®nS/Scheny@rogram can answer this question
as well: InConS/Schenthe query that asks for a given balance can be written as

(begin
(= (balance mortgage ?T) 95)
?T)

which is expanded to a program similar to the following:

(let = ((t (constraint-variable))
(x (balance mortgage t)))
(add-constraint (= x 95))
(determined-value t))

This program computes its result in the following way:

First the variable is bound to a fresh constraint variabf then the function
balance is called with an instance of the clasmortgage> and the newly created
variable T'. Since function application is defined in the usual way, wes mvaluate
the body of thebalance function withmortgage bound to the mortgage instance
andtime bound to the constraint variabl€ passed as argument. This means that
we evaluate the terrif>= time 0) . At this point we encounter the first difference
from the usual functional evaluation model: Comparisoncfioms like = or >= are

52

defined for arguments which are constraint-variables asit #emantics is extended
in the following way: If>= is applied to “known” values like numbers or strings, it
evaluatesto eith@rue orfalse .If, however, one of its values is a constraint variable
it evaluates to a&onstraint in this case to the constraifit > 0. The behavior of the
special operataf is polymorphic as well: If its argumentis a known value itlexsdes
one of the branches; if its first argument evaluates to a @instC, theif -operator
evaluatedoth branches non-deterministically. In the consequent braéclks added
to the constraint store before the forms in the branch arkiete, in the alternative
branch,~C' is added to the constraint store.

Proceeding with our example, to evaluate the consequehedff t-form, the con-
straint7 > 0 is added to the constraint store. The variadgleult is then bound to

the value of theprincipal instance variable of the mortgage. Since tlatimes
loop is just an abbreviation for a statement of the form
(let ((i 0))
(loop
(if (=i time)
(exit-loop)

<do the body of the loop and increment i>)))

we have to evaluate anothér form. Sincetime is bound to a constraint variable, the
expressior(= i time) returns a constraint, and, as before, itheoperator evalu-
ates both branches. To evaluate the first branch we add trstram 7" = 0 to the
constraint store; therefore evaluation proceeds by exitire loop and returning the
value ofresult to the caller ofbalance . At this point the variablex in thelet = -
form is bound tol 00. In the next step we add the constraifd = 95 to the constraint
store and this path of the computation fails.

The program then proceeds to evaluate the alternative @f tHferm. Incrementing
theresult variable and the loop countérproceeds in the normal manner since all
subcomputations return deterministic values. In the rtex&iion the above process is
repeated with the constraifft = 1 added to the constraint store. In this case evaluation
of the first branch exits the method with val®f the constraint: = 95 is true, and the
valuel of T is returned. If we tried to search for further values the paogwould loop
indefinitely.

This example demonstrates the facilities which allow thendess integration of
constraints into the functional core-language: Firss€laonstraints (and constraint-
variables), a facility for non-deterministic evaluatidm¢ktracking) and polymorphic
versions of the built-in functions which take constraim$oi account. With these
additions to the language, functional programs can be usetsgarently in non-
deterministic computations. The example also demonstthst we have unfortunately
introduced one of the problems that is common to all congttanguages int&€on-
S/Schemdt is easy to inadvertently write programs that run intonité loops.

3 The Object-Functional Core

All facilities provided byConS/Schenmare implemented in terms of a small set of pow-
erful constructsConS/Schemis based on th&auchg7] dialect of Scheme [8], which

53

offers a flexible object system with multiple inheritancelanultiple dispatch. In the
next subsections we give a short description of the syntedbsame important features
of Gauche. This introduction covers only a few topics andggds over many important
details. A more detailed description of object systems déinatbased on multimethods
given, e.g., in [15].

3.1 The Base Language

Like most Lisp dialects, and unlike most other langua@x®S/Schemieas two rep-
resentations for programs: Programseiiernal representatioare sequences of char-
acters in a file. Programs iexpression syntaare represented by objects of the pro-
gramming language; the most important aspect of this istheaprogram structure is
represented by nested lists. If the first element of a listasgnting a program is one
of a few special symbols (callespecial operators)he form follows special evaluation
rules and is called apecial form Macros can be used to rewrite list representations of
programs. In [20] Steele and Sussman show that most progragmonstructs can be
defined with macros and a small programming language core.

3.2 The Object System

The Gauchedialect of Scheme, on whicBonS/Schemis built, contains a powerful
generic-function based object system. Classes definertinetigte of objects, instances
of classes contain instance variables (caikdy. By convention class names are en-
closed in angle brackets, e.ga-class> , this has no semantic consequences.

In contrast to more conventional object-oriented langsageass (usually) contains
no behavior in the form of methods, instead behavior is doathin generic functions.
A generic functions a function whose behavior depends on properties of itsraents,
most commonly the class of one or more arguments.

The behavior of a generic function is implementednbgthodsA method defini-
tion in ConS/Schemig similar to a method definition in an object oriented larggia
Since method definitions are not textually nested in claigitlens and thehis pointer
has to be explicitly specified method definitions look sytitadly similar to function
definitions in functional programming languages.

4 Parametric Search

4.1 Search Strategies and Value Collectors

Some logic programming languages, eRyglog, fix the order in which non-determi-
nistic computations are evaluated. If this built-in seastifategy is not suitable for some
application, the whole program has to be rewritten to imgetthe desired behavior.
Therefore many modern logic programming languages allowogrammatic specifi-
cation of the evaluation order in terms o$@arch protocal

ConS/Schemsses a search protocol to control the backtracking behawiis pro-
tocol is based on the search strategies presented in [1616]rthe search strategies

54

are used to search tree-like data-structures composaddss In ConS/Schemthe
applicability of the search protocol is extended to the camtf the backtracking mech-
anism. A more detailed description of the search protocgihvien in [4, 3].

Most logic programming languages provide the user with isphgredicates that
control how many values of a computation should be computedeturned. ICon-
S/Scheméhe user can define these predicates by implementivajuge collectorthat
controls the interface between non-deterministic contprta and the surrounding de-
terministic context. Details can again be found in [4, 3].

5 Backtracking Search

The backtracking search mechanism consists of the singlémitpe
either-fun , and two global parametersurrent-search-strategy

and current-collector . A denotational semantics d@onS/Schemés given
in [4]. Intuitively, either-fun creates achoice point and proceeds to evaluate
one branch of the computation space. Which branch is ilyittaken, and where the
computation is resumed after a branch fails or deliversaltresscontrolled by the two
strategies. All other functions are implemented in termthese primitives.

The functioneither-fun takes a variable number of nullary functions as argu-
ments (these functions are also calllednkg. It arranges for these functions to be called
with the continuation which was current at the tigither-fun was called. We call
these combinations of functions and continuationsitdesof the program tree Back-
tracking is invoked by either returning a value from a brantthe computation tree
if the computation was successful or by calling the funcfaih to abort the current
branch.

The macreeither provides some syntactic sugar on toge@her-fun

(either form ...)
is syntactically equivalent to
(either-fun (lambda () form) ...))))

The macraun provides a mechanism to change the search strategy andcadlieetor
for some part of the computation.

As first example for the use of non-deterministic operationsasider the following
program

(run ((all-values-collector) (depth-first-search))
(either 1 2 (either 'a b ’'c) 3))

The either -form defines a non-deterministic computation that braséh® nodes
evaluating to 1, 2, a nested non-deterministic computatizh 3. The nested compu-
tation branches into three nodes evaluatin@td andc. Evaluating this tree with

an all-values-collector and depth-first-search returedigt(1 2 a b ¢ 3) .Ifthe
program were changed to use breadth-first-search as ss&aatbgy, the returned re-
sultwould be(1 2 3 a b c) . The returned values can be chosen by changing the

55

value-collector: if an instance of the classne-value-collector> was used,
the single valuel would be returned (and the non-deterministic computationlas

not proceed after producing the first value), if<adl-symbol-collector> was
used, the result would @ b ¢) , a<maximume-integer-collector> would
return3.

It is also possible to define non-deterministic functionse@imple example is the
following:

(define (a-boolean)
(either #t #f))

This function non-deterministically returtrsie andfalse . The values computed by
a call to the function are again collected by a value colleatw the result is returned
as the result of the computation:

(if (a-boolean) 1 2)

This program returns the ligtl 2) . It is again possible to use different search-
strategies and value collectors. Definitions of non-deiistic functions can also be
recursive. The function

(define (an-integer-above m)
(either m (an-integer-above (+ m 1))))

successively returns all integers larger than its argument

Computations that cannot continue can be aborted by catliedunctionfail
This causes the current branch of the program tree to be runwithout providing a
value. Thus the program

(run ((all-values-collector) (depth-first-search))
(either 1 (fail) 2 3 (fail)))

evaluatestdl 2 3) . The following expression

(either (begin (display "one") 1)
(begin (display "two") (fail) (display "still two") 2)
(begin (display "three") 3))

prints"one" "two" "three" and returngl 3) . We can therefore define

(define (an-integer-between min max)
(if (> min max)
(fail)
(either min (an-integer-between (+ 1 min) max))))

Since this function recurses in teégher form, the evaluation tree is binary, with
a value as left child and a non-deterministic computationgi® child of all nodes but
the rightmost one. To get a balanced tree another definitmrd\be more appropriate,

e.g.

56

(define (an-integer-between min max)
(cond ((< max min) (fail))
((= max min) min)
(else (let ((result (quotient (+ min max) 2)))
(either result
(an-integer-between min (- result 1))
(an-integer-between (+ result 1) max))))))

6 Integration of Constraints

With generic functions and non-deterministic computatiah our disposal, the inte-
gration of constraints is relatively straightforward. NMlepecial operators of the core
language are defined as macros. In contrast to the expaigsiensn [20], most macros
in ConS/Schemexpand into generic functions. This allows users of the laigg to ex-
tend the behavior of special operators. Therefore the cinssystem can be defined
on the “user level” of the language, without access to irglsrof the implementation.

To implement the constraint system we define classes
<constraint-variable> and <constraint> and add appropriate meth-
ods to the already defined generic functions. The evaluatiehbinding operations of
the base language remain unchanged, in particular it isossijple to bind constraint-
variables to values. (It is, of course, possible to bindalags to constraint-variables
and to constrain a constraint-variable to a single value).

Constraint-variables have a slot that describes the cisegrof values. If new con-
straints are propagated, the value of this slot is modified.

The generic definitions of most operators are straightfodweor example the func-
tion + may be defined as follows:

(define-method + ((x <number>) (y <number>))
(Yoprimitive-+ X y))
(define-method + ((x <constraint-variable>) (y <number>))
(let ((result (make <constraint-variable>)))
(add-constraint
(make <sum-constraint> :lhs x :rhs y :result result))
result))
(define-method + (x (y <constraint-variable>))
(let ((result (make <constraint-variable>)))
(add-constraint
(make <sum-constraint> :lhs x :rhs y :result result))
result))

In ConS/Schenmaost control structures are defined in terms of a small settioi-p
itive operations, likeambda -abstractions and function applications. There are no spe-
cial operators that implement conditionals or control-flmanipulation, all these oper-
ations (exceptall/cc) are implemented in a library. To illustrate this point wesh
the definition of the “special operatoif” :

57

We implemenif as a macro that builds thunks for the consequent and alteznat
branches of the conditional and then calls a generic funati@l-if ~ to dispatch
on the value of the predicate. Note that the body ofdtaal-if ~ function calls the
appropriate thunk to perform the evaluation of a single binarf the predicate of a
conditional evaluates to a constraint, both branches ale&ed non-deterministically
by the third method.

(define-macro (if pred con . alt)
‘(eval-if ,pred
(lambda () ,con)
(lambda () ,(if (null? alt) #f (car alt)))))

(define-method eval-if (pred con alt)
(con))
(define-method eval-if ((pred <false>) con alt)
(alt))
(define-method eval-if ((pred <constraint>) con alt)
(either (begin (add-constraint pred) (con))
(begin (add-constraint (negate pred)) (alt))))

7 Interaction with Imperative Features

The integration of non-deterministic computation and thectional subset o€on-
S/Schemeesults in a satisfying combination of functional and ceaist-based pro-
gramming. This is, however not always the case if imperdéagures of the language
are used. The main problem is the following: If a branch of¢bmputation tree per-
forms a side-effect, should this effect be reversed if ttembh terminates or not? It is
evident that there is no “right” answer to this question.

This problem can be clearly seen in the implementation ofcthestraint solver:
Each constraint variable contains a sloimain that holds information about the pos-
sible values under the current set of constraints. If nevsttamts are added, this slot
is modified destructively. It is clear that all modificatianade in a particular branch of
the program tree have to be undone when the control flow lghisbranch. However,
since the control flow of the program can be controlled bydeand value strategies
there is no simple stack discipline for performing theseasngerations. Furthermore,
it is possible that a branch of the program tree is resumed sdime of its side-effects
have been undone; in this case the side effects have to beeaedo

We currently have no automated solution for this problenthihactual implemen-
tation of ConS/Schemthe either-fun function takes two additional thunkefore
andafter as arguments. Theeforethunk is evaluated every time when the control flow
enters the branch of the program tree dominatecittyer-fun , the after thunk
is evaluated each time the control flow leaves this regiois Sblution allows the pro-
grammer to correctly manage the state even if search syregpgatedly switch between
different branches of the program tree. However a more ategal less error-prone so-
lution to this problem is desirable.

58

8 Conclusions and Further Work

We have shown that the combination of non-deterministicfnatation with a language
based on generic-functions leads to a language that offaralgss integration of three
important programming paradigms: object-oriented, fiomal and constraint-based.
The resulting languagéonS/Schenfers simple operational and denotational seman-
tics but provides the same expressive power as other coridinactional languages.
The prototype oConS/Schemis implemented on top of Gauche-Scheme.

There are some significant optimization opportunitiesatvould like to explore
in the future: The most important bottleneck is the searciamol which relies heavily
on generic function dispatch. In most programs the speciéthods called could be
determined statically and therefore most of the overheitkoprotocol could be elimi-
nated. It would be interesting to investigate possib#itie optimize the implementation
of ConS/Scheme eliminate most generic function calls [17].

We have already mentioned some unresolved problems whéanictee modifica-
tions are performed in non-deterministic computationsil®V@onS/Schemgrovides
facilities that allow the programmer to write programs thatk correctly when side-
effects are performed in non-deterministic computatidims, takes more effort than it
should. The most likely approach to solve this problem seenhe by adding a trans-
action concept to the language.

Acknowledgmentd would like to thank Professor Martin Wirsing for his conting

support. Parts of this work were developed while | was sggnMonash University,
Melbourne, on invitation of Professor John N. Crossley.

59

Bibliography

[1] Thom Fruhwirth, Web page: http://ww. pns.informati k.
uni - muenchen. de/ sof t war e/ j ack/i ndex. ht M accessed 2. oc-
tober 2003

[2] Michael Hanus,Curry, an integrated functional logic languagéJniversity
of Kiel, Germany, 0.7.1 ed., June 2000, See also the WRp://www.
informatik.uni-kiel.de/ ~curry/ , accessed 29 October 2001.

[3] Matthias M. Holzl,ConS/Lisp—a mop-based non-deterministic,IRmceedings
of the International Lisp Conference (Raymond de Lacazg, 2002.

, Constraint-functional programming based on generic fioret Work-
shop Proceedings: MultiCPL'02: Workshop on Multiparadiganstraint Pro-
gramming Languages (Michael Hanus, Petra Hofstedt, SlicleAnadher, Thom
Fruhwirth, and Armin Wolf, eds.), September 2002.

[5] ILOG, Web page for ILOG solverht t p: // www. i | og. conT pr oduct s/
sol ver/ accessed 29 october 2001

, Web page for the ILOG optimization suite:t p: / / www. i | og. con!
product s/ opti m zati on/ accessed 29 october 2001

[7] Shiro Kawai, Web page for gauchehttp://ww. shiro. dreanmhost.
coni schene/ gauche/ , accessed 2. october 2003

[8] R. Kelsey, W. Clinger, and J. ReeRevised report on the algorithmic language
schemeHigher-Order and Symbolic Computati@f (1998), no. 1.

[9] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bohibwe art of the metaob-
ject protoco) The MIT Press, 1991.

[10] Rita Loogen/ntegration funktionaler und logischer programmiersphag, Old-
enburg, 1995.

[11] Kim Marriott and Peter J. Stuckelgrogramming with constraints — an introduc-
tion, The MIT Press, 1998.

[12] David McAllester,Lifting, November 1992, Lecture Notes for 6.824, Artificial
Intelligence.

[13] David McAllester and Jeffrey Mark Siskintllondeterministic Lisp as a substrate
for constraint logic programmingProceedings AAAI, July 1993, pp. 133-138.

, Screamer: A portable efficient implementation of nondeitgistic Com-
mon Lisp Tech. report, University of Pennsylvania, Institute f@search in Cog-
nitive Science, 1993, IRCS-93-03.

[15] Kent M. Pitman (ed.)information technology — programming language — com-
mon lisp ANSI Standard, no. ANSI X3.226—-1994, American Nationalrfards
Institute, 1994.

[16] Stuart Russel and Peter Norvigytificial intelligence, a modern approacRren-
tice Hall, 1995.

[17] Olin Shivers, Control-flow analysis of higher-order languageBh.D. thesis,
Carnegie Mellon University, May 1991, CMU-CS-91-145.

[18] Gert SmolkaWeb page for thélice programming languageht t p: / / vwwv.
ps. uni - sh. de/ al i ce/ , accessed 29 october 2001

(4]

(6]

(14]

60

, Concurrent constraint programming based on functionalgpaanming

Proceeding of the European Joint Conferences on Theoryracti¢e of Software

(ETAPS), 1998.

[20] Guy Lewis Steele Jr. and Gerald Jay Sussnhambda the ultimate imperatiye
Tech. Report Al Memo 353, Maddachusetts Institute of Tetdgng Artificial In-

telligence Laboratory, March 1976.

(19]

61

62

Functional versus OO Programming:
Conflict Without a Cause

Delesley Hutchins

CISA, School of Informatics, University of Edinburgh
Appleton Tower, 11 Crichton Street,
Edinburgh, EH8 9LE, UK
+44 (0) 131 650 2732
D.S.Hutchins@sms.ed.ac.uk

Abstract. Despite some overlap, object-oriented and functional ouilogies

are generally regarded as separate paradigms. OO progngnisnconcerned
with classes and inheritance, whereas functional progiamia concerned with
functions and function composition. | present a new objeatieh which unifies

these paradigms. Classes are represented as higher-ondépms, and inheri-
tance becomes a form of function currying. This unificatiesuits in a far sim-
pler and more flexible object model, and one which eliminaéeeral outstanding
problems with existing OO languages.

1 Introduction

Although they are generally presented as separate prograpparadigms, functional
and object-oriented languages are closely intertwinedhBarrows concepts from the
other, to the extent that it is almost impossible to desaiitelanguage as being either
“pure functional” or “pure object-oriented”. This minglircan be most clearly seen in
mainstream OO languages: classes and interfaces arerbailinfiethods, and methods
are simply functions. Likewise, even the purest of functidanguages, such as Haskell
or ML, use OO concepts. Functional programs must still dadi data types, and a
combination of subtyping (a.k.a. inheritance) and funttiwerloading is sufficient to
mimick most OO constructs. Haskell provides a particuladyerful mechanism for
dealing with classes and polymorphism that rivals any nieasn OO language on the
market. [8]

Nevertheless, this kind of intertwining can best be desctias “peaceful coexis-
tence,” rather than a more meaningful marriage. Littlerafiehas been made to unify
the functional and OO paradigms into a single whole. In Cet#ekample, methods (i.e.
functions) and classes are regarded as completely diffeogrstructs. Classes can in-
herit from one another, but functions can not. Classes hawstrictors and destructors,
public and private methods, and they can be nested, all giepéhat C++ functions do
not have. Methods, on the other hand, can be declairdghl , and function pointers
can be passed as first-class objects at run-time. C++ doesipport virtual classes or
class meta-objects.

Haskell has a similar set of limitations. Indeed, classesfanctions are so differ-
ent from one another that there seems little point in ungytimem. Classes are types;

63

their purpose is to label data structures with meta-infdionaso that the code which
manipulates that data “knows” what kind of data it is deaiiith. Inheritance creates a
subtype relationship; it organizes a set of related classesategories, so that similar
types of data can be handled in a consistent way.

Functions serve a very different purpose. A function engkpss a computation,
not a type. A function manipulates data; it does not labet itaiegorize it. Even OO
languages obey these principles — an instance of a clagssdfata, while methods
(a.k.a. functions) modify and interpret it.

Despite these obvious differences, there is a deeper symbwetveen classes and
functions which has been largely ignored. Although theyeaelifferent purposes, the
computational mechanism by which classes and functionsaiemented is very sim-
ilar. An instance of a class and the activation record of ation are almost exactly the
same. When a class is instantiated, a new record is creaveltich the data members
(the slots) of the class are bound to actual values. The adllifig a function likewise
creates an activation record in which the arguments of thetfon are bound to values.
Both instances and activation records create a lexicaksoim which objects can be
referenced by name.

There are only two real differences between calling a femcéind instantiating a
class. A function has a function body, and it returns a valugs capability can be
easily implemented with class constructors. For examplee s the factorial function
implemented as a C++ class:

class Factorial {
public :
int n, result;
Factorial(int n_.) : n(n.)
if (n<=1) result = 1;
else result = nxFactorial(n—1).result;

}
s
Factorial (3).result; // returns 6

This symmetry extends to other constructs as well. The fedtiunction can also be
implemented with C++ templates using a similar technique:

template <int N>
class Factorial {
public :
enum { result = N x factorial<N—-1>:result };

b
class Factorial<1> {
public :

enum { result = 1 };
b

Both the class and template implementations create a realug by storing it as a
data member of the class. The class definition is a bit moaggsiiforward, because a

64

function body can be emulated simply by placing code in thestroctor. The template
must jump through a few extra hoops; it declares a compihe-texpression with an
enum, and uses template specialization because C++ does natlpreompile-time
if statement. For the most part, however, these are merelgmgitation details.

In other words, C++ provides three completely differentstaucts: functions, classes,
and templates, which in this case do essentially the samg.tAll three constructs cre-
ate a lexical scope in which named parameters can be bouraduesv (I will use the
terms parameters, slots, arguments, methods, and menopeesvat interchangeably
throughout this paper. | believe “parameters” to be the rgesteral term; the others
have more specific connotations in various languages.eShe lambda calculus al-
ready provides a mathematical formalism for binding nama@dmeters, this raises an
obvious question: can the functional and object-orienwagigms be unified?

The answer to this question is that not only can the two pgraslibe unified, but
that such unification has considerable expressive powerekample, in most func-
tional and OO languages, only methods (i.e. functions) eaddzrlaredvirtual and
overridden during inheritance. In C++, this is because dahction pointers can be
stored in the virtual method table. In Haskell, it is becamsly functions can be over-
loaded to handle polymorphic types. Yet the notion of a tattclass” actually turns
out to be quite useful. Virtual classes not only provide agaht mechanism for im-
plementing generic classes (i.e. C++ templates), they posvarful tool for large-scale
programming. [13]

A single class encapsulates a set of interacting metho@shtegwith the data they
operate on, and allows the whole set to be extended, modifieédeused by means
of inheritance. Unfortunately, most complex problems megmore than once class.
With virtual classes, a set of interacting classes can lig@we encapsulated, and then
extended, modified and reused by means of inheritance.aVictasses thus provide
much of the capability offered by components or aspectatei programming, [1] [12]
without any need to abandon standard OO concepts. | willdssthis and other issues
later on in this paper.

I will present my ideas for synthesis in the form of the Ohmagramming lan-
guage, an experimental language which is being developbtZat Associates Cor-
poration! The Ohmu language provides only one construct: the streicumd one
operation: the structure transformation. Functions,sgasand templates, along with
function calls, inheritance, and instantiation, can allemeulated with structures and
structure transformations.

This paper is organized as follows. Section 2 introduceshmu object model,
which unifies functions and classes. Section 3 exploreessselated to binding and
types. It explains why existing type systems are inadequaaig introduces the Ohmu
prototype model, which eliminates the distinction betwégres and values. Section
3 also describes the similarity between function currying ©0O inheritance. Sec-
tion 4 discusses lazy evaluation, meta-programming, angtssrelated to run-time and

! This work is being funded by:
MZA Associates Corporation
2021 Girard SE, Suite 150, Albuquerque, NM 87106-3140
voice: (505) 245-9970 fax: (505) 245-9971 web: http://wmza.com

65

compile-time. The Ohmu language depends on a partial eNafuengine to shift code
from run-time to compile-time, and track dependencies thie introduced by the use
of virtual types. Section 5 concludes with a discussion af lftese concepts relate to
large-scale programming.

2 Synthesis

As | mentioned earlier, the most fundamental differencevben classes and functions
is the fact that classes represent types, whereas funci®mnst. Every object must be

tagged with an identifying type, namely the class that e@#t and the compiler uses
that information to make sure that programs are type-sgfged may encode varying
amounts of information depending on the language, but irgga type describes the
structure of data within an object, and the valid operatitias can be applied to that
data. In other words, the type or class of an object desctiteeimiterface of that object.

Another important characteristic of classes is that théstex the meta-level of pro-
gram specification. A class describes the general propestia set of similar objects,
rather than the specific details of one particular objecs&#s and types thus exist at a
higher level of abstraction than “real” objects and exelgt@ode. In most languages,
including Java, C++, and Haskell, types are not first-cldgeats, and they exist only
at compile-time.

The traditional view holds that while human programmerseompilers must both
be aware of types in order to reason about program corres;taesinning program
should only be concerned with “real” objects. Program fragta that do need to rea-
son about types are known as meta-programs, and they cafiibelio write because
they must essentially extend the operation of the compileompile time. C++ tem-
plates are perhaps the most notorious example of the difésuhvolved with meta-
programming. [5]

Functions are much simpler than classes. A function hasejtigt like any other
object, but it is not a type in and of itself. There is no sudhdhas an instance of a
function. Functions do exist at run-time, and they are é@as first-class values in most
languages, even in OO and imperative languages like C++plihgose of a function
is to encapsulate a particular computation into a reusabltute.

Mathematically, a function is defined as a mapping from oméosanother:

factorial: 7Z — Z
add: ZxZ— 7

Thefactorial function maps from the set of integers to the set of integende theadd
function maps from a pair of integers to a single integereNbatZ — Z is a type: it
describes the set of all functions that map integers to aregvhilefactorial itself is
an instance: a single function within that set.

There are many ways to define a type mathematically, but thplsst is to state
that a type is just a set — it is the set of all objects that hasetype. There'g, the set
of integersR, the set of floating point numbers, etc. More complex datzcsires can

66

be represented as the product of one or more simpler tyges, e.

Point = R xR

Line = Point x Point

If we define types as sets, however, then a function actuallytype. A function can
be represented as a relation between its domain and its.rArfgectional relation is a
subset of the product of the domain and the range, whicHigatibe following criteria:
for every element: in the domain, there exists one and only one elenient) in the
relation. The factorial function can thus be defined as:

factorial = {(0,1),(1,1),(2,2),(3,6),(4,24)...(n,nl)} C ZxZ

According to this model, we can now define what it means taaimt&ite a function.
An instance of a function is an activation record for thatdiimn — a data structure
that contains both the bound arguments to the function, laadesult of evaluating the
function with those arguments. This is exactly what the Clasg version ofactorial
defines: it's a class with two elements,and result, and the constructor initializes
result to the appropriate value.

Mathematically speaking, there is no reason to distingh&iwveen functions and
classes. Functions and classes are both types, and theyptahéinstantiated. This
property has not been exploited in other languages, magdylbecause it was not con-
sidered particularly useful. When a function is evaluateel,are generally only inter-
ested in the result, and the activation record is discantedediately. Since activation
records do not persist, they need not have a type. C++, ftarins, allocates all acti-
vation records on the stack, which means that the recordltessdst been destroyed by
the time the function returns. Lisp and similar languagey kesp such records around
as a lexical context for closures, but activation recordsséll not first-class values and
thus have no type.

If activation records are allowed to persist, however, ttiey can serve as in-
stances, and functions can consequently serve as classae. i$ no need for a func-
tional language like haskell to define a separate mecharosmefclaring data types.
From the opposite perspective, there is no need for an OQuéayalike Java to define
a separate mechanism for declaring functions; classesecasdd just as effectively.

The Ohmu language emualtes both classes and functions byheitOhmustruc-
ture:

factorial: Struct { [/ a function
n: Integer;
result: if (n == 0) then 1 else n«factorial(n—1);
new: bind (n);
implicit call: bind (n) = result;
b
Point: Struct { /1 a class
X,Y: Float;
r: sqrt(x*sx + y*y); /I — a method

67

theta: atan2(y,x); /I — another method
new: bind (x,y);

s

X: factorial .new(3).result; // x = 6 sugar—free

y: factorial (3); /'y = 6 with sugar
origin: Point.new(0,0); // instantiate a class

Here is the Ohmu definition for both a class and a function. Bind command is
responsible for binding values to parameters; it esséntialts as a named construc-
tor, and it is declared with an ordered list of the names thiaééds to bind. Unlike a
traditional function, an Ohmu structure seldom binds alt®parameters. Some mem-
bers, such as, theta, and result, are internal methods and do not need to be bound.
Structure parameters are also referenced by name, so theybaet order.

Thebind command thus specifies which parameters should be boundjraatdhe
order of arguments should be for binding them. It createsanuans an instance of the
structure that it is declared in. Instantiation in Ohmu idschastructure transformation
because it has somewhat different semantics than indiantia other OO languages.

A bind declaration may optionally specify a result. This is a bisypfitactic sugar;
it keeps the programmer from having to put gesult after every function call. The
implicit keyword is another bit of sugar; it operates ld@erator () in C++, and elim-
inates the need to write out an explicitew. Note thatnew here is not a keyword.
Ohmu supports named constructors, and whée is generally used by convention,
other names, such a=ll in the example above, are perfectly legal.

This unification between classes and functions is not unig@@hmu. It was orig-
inally developed as part of the Beta language. [14] In Bet#h blasses and functions
are referred to agatterns Each pattern has an optional body which contains statement
that are evaluated when the pattern is instantiated. Ohmctstes differ somewhat in
that there is no real function body. Ohmu functions are adteeated as relations, and
the code which computes the result is stored as a named meifrtherstructure. Inci-
dentally, thePoint class above is also a relation — it calculatesndtheta for every
x andy. As a resultPoint can be used either as a class, or as a function that converts
from Cartesian to polar coordinates.

It should be noted that although Ohmu functions are reatlyctiires, the syntax
given above can be a bit unwieldy. The Ohmu standard libnacjudes aFunction
macro that automates this process:

factorial: Function ((n: Integer), Integer) {
if (n == 0) then return 1
else return nxfactorial (n—1);

3

This alternate syntax uses a more conventional statens¢fdtithe function body, but
it is otherwise equivalent to the earlier definition.

68

2.1 Single vs. Multiple Dispatch

Another major difference between OO and functional langsag the way they imple-
ment methods. In an OO language, methods are usually isdadis being part of the
object. They not only manipulate object data, they providegh-level interface that
controls access to that data and guarantees object iyt€g@t methods areverridden
with new versions during inheritance in a way that closeserables parameter binding.

In a functional language like Haskell or CLOS, the methodieée on a data type
are declared as external functions, and different versidrassmethod are defined for
different derived types by means of functioverloading The advantage of this system
is that it supports multiple dispatch, a technique in whicé types of all arguments
to a function are considered when determining which ovelddaversion to call. Most
OO languages rely on single dispatch, which only consideesype of the message
receiver.

The problems with single dispatch are well documentedntlmdifficult to define
certain polymorphic operations for a set of related typasgusingle dispatch. [4] A
classic example would be arithmetic operators such asand the like. Such operators
must be able to handle integers, floats, complex numbers,atd the types of all
arguments should ideally be considered when determinirigharersion of+ to call.
Multiple dispatch also makes it easier to add new operatiorexisting data types,
because the addition of new methods does not affect thelulaxsschy.

The disadvantage of defining methods outside of the datasypat object data and
the functions that manipulate that data are not encapstilate one unit. There is no
longer a clear interface to a class other than the slots afdkeetype itself, nor is it ob-
vious which methods need be overloaded to support new diypes. Single dispatch
makes it easier to define new classes with existing opesatishereas multiple dis-
patch makes it easier to define new operations on existisgesa Single dispatch also
gives an object much tighter control over its own integriince it is always obvious
which method will handle a particular message.

2.2 Higher Order Functions

The Ohmu language uses single dispatch for a different ne&nogle dispatch allows
inheritance and instantiation to be unified into a singlerapen. OO languages have
traditionally used two different kinds of binding: instétion binds data members to
values, while method overriding during inheritance bindsvrdefinitions to existing
methods. Even the Beta language maintains this distincBeta demonstrated that
functions and classes could be unified into a single corstiout it still provides two
operations; data members are bound to create instancds, wéihods and types are
bound to create derived classes.

The Ohmu language goes one step further. If methods are défisle a class
then they become parameters of that class. If functions Esdes are also two sides
of the same coin, then a class that declares internal meth@imlogous to a higher
order function. A higher-order function is one that accepiter functions as arguments,
and/or returns another function as its result. By includitiger functions and classes as
internal parameters, a class becomes a higher-order aonstr

69

Functional languages have long supported higher-ordetifuws; indeed, they are
one of the most powerful mechanisms provided by the funatipnogramming par-
adigm. [8] Higher-order functions rely on the principle tHanctions are first-class
values which can be passed around at run-time just like amgr @bject. Passing one
function as an argument to another is no different from pasany other value.

OO languages provide a special operation that only bindstiwms — namely in-
heritance. Yet if functions are first-class values, thematie no need for a separate
inheritance operation just to override methods. In faotpdé instantiation is enough to
implement virtual methods, even in C++:

class Number {

protected :
Il store the add method as a function pointer
typedef void (xoperation)(Number& self, Number& n);
operation add;

public :
/1 decent syntax for calling add
inline void operator +=(Number& n) {
(xadd) (xthis , n);

}
Number(operation a) : add(a) { }
s
class Integer : public Number {
private :
int value;
static void add_op(Integer& self, Integer& n) {
self.value += n.value;
}
public :
Integer() : // initialize the add member
Number(add_op), value (0)
{3

The code above is a toy implementation oNamber and Integer class. Instead of
using normal virtual methoddjumber creates its own virtual method table by storing
pointers to functions in the object itself. Its behavior ¢gpivalent to that of standard
virtual methods.

2.3 Higher Order Functions = Reusable Code

Stepping back a little, | wish to discuss briefly why both skesand higher-order func-
tions matter at all. Functions in general provide a convarabstraction for performing

70

computations because the implementation of a functionnsptetely hidden behind a
clear and well-defined interface. Mathematically, a functis just a relation between
two sets. It does not matter how a function arrives at a ragsutiatters only that it takes
values of one type, and maps them onto values of another type.

The downside is that because the implementation is coniplemaque, there is
no way to modify or re-use parts of a function definition. @bjeriented languages
address this problem by means of block structure and iramegt. Unlike functions,
classes are not monolithic objects; a class consists of @pgobinteracting methods
which can be selected and overridden individually in detiglasses. Virtual methods
act ashooks they provide named locations where a base class can defamcparts
of its implementation to its children, or where new functdity can be inserted into an
otherwise working system.

Functional languages provide an analogous mechanism f& i@use in the form
of higher-order functions. A higher-order function, likeckass, defers part of its im-
plementation to hooks — other functions that are passedgasnants. By attaching
different operations to the hooks, a whole family of relategh-level functions can be
produced, just as a whole family of derived classes can begtenteby overriding the
virtual methods of a base class.

The classic example from functional languages istfa@ routine, shown here as it
is defined in Haskell:

map f [] =1
map f (h:t) = (f h) : (map f t) — (h:t) = (head: tail)
map (x2) [0,1,2,3,4] — returns [0,2,4,6,8]

Themap routine takes a functiohand a list(h:t) as arguments, and applieto every
element of the list, thus creating a new list. The OO equiviadé map is the iterator
design pattern, [7] which likewise hides the details of daitacture traversal:

List::iterator it = myList.begin();

List newlist;

for (;it !'= myList.end(); it++)
newlist.push_back(it.value () * 2);

Both classes and higher-order functions share a commorgerp hey structure code
in such a way that a general algorithm, in this case a datatsteitraversal, can be
glued together with third-party code, in this case an opamad be performed on each
element. What makes a language powerful is not the numberoplexity of its con-
structs, but the “glue” that allows different constructd®mcombined. The Ohmu lan-
guage is an attempt to provide a better glue by treating alkizacts in a uniform
manner.

2.4 Higher-Order Classes, a.k.a. Generics

Since Ohmu functions and classes also represent typesnébegae of higher-order
functions is higher-order types. A higher-order type is ehea type that is parameter-
ized by other types. In OO parlance, such types are refesrasgeneric classes

71

Generic classes in C++ are implemented with templates:

template <class T>
class List {

public :
T head;
List<T>x tail;
s
/l creates a new class — lists of integers

typedef List<int> IntegerlList;

A C++ template can be viewed in several ways. On the one hateinplate acts as

a compile-time function that maps from types (or constatsjlasses. On the other
hand, a template represents a type in and of itself. Morerataly, templateshould
represent types; it would be extremely helpful if the defimitabove declared a generic
type List, and if IntegerList was a specific instance of that type. That's how Java
generics work. [3] Unfortunately, a C++ template cannot beduby itself; it must be
instantiated before it means anything at all. This was a nwjersight in the design of
C++; templates are an excellent example of why it is usefufifoctions and types to
have a unified definition.

3 Prototypes

I have now discussed three different ways in which parammeatan be bound. Data
members are bound to values during function calls or clegtatiation. Methods are
normally overridden during inheritance, but they can aledbund during instantia-
tion so long as functions are treated as first-class objégfe parameters are bound
during template instantiation. (It should be noted thaketparameters are also bound
at compile-time rather than run-time, but | will ignore tliat the time being; binding
times are discussed in Sec. 4.)

The astute reader will have noticed that | have not yet givgnexamples of type
and method binding in the Ohmu language. This is becausecthargtics of binding
data, functions, and types are all slightly different. C-etves this problem by pro-
viding three different operations: instantiation, intinice, and template instantiation,
but the Ohmu language only provides one operation, and thahmthat the semantics
must be unified.

When data parameters are bound, the binding moves from draetbtype dec-
laration, such asnt or float, to a concrete value, such &sor 3.14. A traditional
second-order function parameter does the same thing. étisukd as an abstract func-
tion type such ag — Z, which represents a set of possible functions, and it is then
bound to a concrete function definition suchfastorial .

OO0 method overriding, on the other hand, may start out witrethod that already
has a concrete definition, in which case the methagpgacedwith another that has
the same type. The semantics of object replacement areatiffrom the semantics of
binding. Object replacement moves from value to value, eagbinding moves from
type to value.

72

The situation becomes even more confusing once we intraéngglate or generic
class parameters. A constrained class parameter, sucbsesptovided by Java gener-
ics, [3] specifies a base class. Such a parameter can be bwang terived class of
that base class. This, too, is different from data membeesdata member specifies a
class, it means that the data member can be bound tmatanceof that class, or any
instanceof a derived class. When a type parameter specifies a classaits that the
parameter can be bound to derivddssesbut not instances.

To summarize, the three forms that parameter binding canaek

e Type to Value: e.gint = 3

or int foo() =0 = int foo() {...}
e Value to Value: e.gint foo() {def#1} = int foo() { def#2}
e Type to Type: e.gclass Animal = class Dog

Another factor to consider is the fact that while both interce and instantiation
can be implemented with binding, they are used in differeaysy Instantiation is a
“one shot” operation. It takes an abstract type declaratimhcreates an instance from
it. Once an instance has been created, everything in thianics is fully bound, and
definitions can no longer be re-bound.

Inheritance, on the other hand, is incremental. There mag bkain of derived
classes, each of which re-binds various methods. GUI tmotiten have quite deep
inheritance hierarchies, such as:

Object = Window =- Widget = Control = Button

Each class in the chain will generally override key methadssisdraw() or handleEvent()
in order to implement its behavior.

3.1 Prototypes Unify Classes and Instances

One way to allow incremental changes in a uniform manner eetse distinguishing
between abstract types and concrete instances, and to @éfifiag in terms of ob-
ject replacement. If types are regarded as first-class thjgen this is a logical next
step. Binding an abstract type to a concrete value becomegpéeamatter of replacing
one object: the type, with another object: the value. It dag#snatter whether the ob-
jects in questions are “types” or “instances”; we are simipjylacing one object with a
different, yet compatible object.

Unfortunately, this confounds the traditional mechanismdetermining which ob-
jects are “compatible,” i.e. the type system. A parameterazdy be bound to an object
of the proper type; to do otherwise would violate the inteefaf the function or class.
If we treat parameters as ordinary objects, and “bind” thgnpdrforming object re-
placement, then we must replace the original parameteromi¢hof the same type. This
is how standard OO inheritance works; a method can only beidden with another
method that has the same signature.

In most current OO languages that support first-class tyqpes) as Smalltalk or
CLOS, class meta-objects likit or float are instances of typ€lass. [11] The num-
ber3is not a class, and thus cannot be used to replace a parah@tteas been declared

73

asint. The object3 and the meta-objedht are not type-compatible. Smalltalk sup-
ports class meta-objects, but it still distinguishes betwelasses and instances, and
object replacement is not an appropriate operation.

Consider also the case in which a parameter from a genesig glast be specialized
to a derived type, such as froctass Animal to class Dog. If we used simple object
replacementclass Animal could be replaced with any other class, even completely
unrelated classes, because it is an instance of Glpses. Generics require a more
specific kind of parameter binding; the replacement objacstrbe a derived class of
the original.

The Ohmu language resolves these issues by switching froatdiidnal class/in-
stance or type/value system to a prototype model. In the Opwoiotype model, not
only are all types first-class objects, but all objects ast-fitass types. As | discussed
in section 2, a type identifies a set of objects. The tiyyie for example, identifies the
set of all 32-bit integers. The numb&rcan also be regarded as a set. It is a set with
one element, otherwise known as a singleton set, whichifaenthe set of all 32-bit
integers equal to 3. By granting ordinary objects the stafugpes, we can derive an
appropriate replacement rule for parameter binding:

e An object can be replaced with any other object, so long asiéhve object is a
subtype of the original.

Thus, we can replace that object with the3 object, becaus8 is a subset of
int. We can also replaagass Animal with class Dog, so long a$og derives from
Animal. This new rule for parameter binding encompasses all of rdmittonal OO
and functional operations. It handles function calls areg€linstantiation by binding
types to values, it covers OO inheritance by allowing mettyetriding, and it allows
template and generic class parameters to be refined to defasses.

3.2 Computations with Prototypes

Treating values as types has some interesting consequéstof all, it means that
values and types must have the exact same interface. Inwthds, if it is possible to
evaluate an expression lik8 + 1), it must also be possible to evaluate the expression
(Integer + 1). If this were not true, then replacinigteger with 3 would not be a
type-safe operation.

So what does the expressifinteger + 1) mean? An abstract type suchlateger
represents a “don’t know” value. We don’t know what the restiaddingl to an arbi-
trary integer is, but we do know that the result will be angrgte Santeger + 1 = Integer.

A side benefit of this system is that it becomes easier to wmiéa-programs that
reason about types. The type of an expression can be deeztmiarely by evaluating
an expression with abstract prototypes. ConsidePtiat class from before:

Point: Struct {
X,y Float;
r: sqrt(xxx + yxy);
theta: atan2(y,x);
new: bind (x,y);

74

b

pointll: Point.new(1,1);

Point.r /1 evaluates to sqrt(Float) = Complex
Point.theta Il evaluates to Float
pointll.r; // evaluates to sqrt(2) = 1.414...

1.570...

pointll.theta; // evaluates to pi/2

The Point prototype is a full-fledged object. It is perfectly legal @llanethods such
asr andtheta on it; the compiler will return a prototype that represergsrauch as it
is able to determine about the result. Oxcandy have been bound to more specific
values,r andtheta will compute a more specific result.

Programming with prototypes has a somewhat different Feed programming with
types and values. The word “prototype” is appropriate. Gndhe hand, prototypes
represent abstract concepts. On the other hand, protaypesal, working objects, and
they can be used in real computations. Unlike traditionpésyand classes, prototypes
are not meta-level constructs.

Traditional OO classes are descriptions of instances, yoelthecking or other
program verification is done by analyzing the class desorptwithout running any
user-level code. An Ohmu program is constructed diffeyeAth Ohmu prototype de-
fines a new concept not by describing it, but by building a wagkrersion of it. That
working version can then bgpecializedby replacing abstract parameters with more
specific subtypes.

Although | have thus far used the term “binding” to describis fprocess, “spe-
cialization” is actually a better word. Ohmu prototype dpkzation bears more re-
semblance to object-oriented inheritance than it doesattittonal argument binding
in functions. In particular, specialization can be incremaé it is possible to create a
series of derived prototypes, each of which is more spedtifin its parent.

The simplest example of incremental specialization happéren some parameters
are bound to concrete values, while the rest remain abstract

XPoint: Point.new(Float, 0); /Il a point on the x—axis
YPoint: Point.new(0, Float); /Il a point on the y—axis
origin: XPoint.new(0, 0); /1 binds both x and y

In XPoint above)y is bound to0, while x remains an abstract prototypé&Point thus
represents an abstract type — the set of all points on theésc-ax

(Intheory, a clever compiler might be able to determineiatgbint thatsgrt (22) =
|z|, and thatatan2(0, z) = {0, pi}, and update andtheta appropriately. In reality, the
current implementation has no symbolic math processinghuify to speak of. Due
to compiler limitations, the result of evaluating an expsies with abstract prototypes
may not be the most mathematically specific type possibite#d, it represents what
the compiler can guess about that expression. This is aigaatmore useful result,
since the capabilities of the compiler place a fundameirtaidtion on the rest of the

75

code. The worst case scenario is that the compiler simplynsObject — the most
generic type possible.)

Incremental specialization also occurs when parameters@ind and re-bound to
a succession of abstract subtypes. A parameter declaren @bject, for example,
could be bound tdtNumber and then re-bound tinteger before finally being fully
specialized down t0:

List: Struct {

head: Object;
tail: List;
new: bind (head, tail);
b
/Il an abstract type — a list of integers

IntegerList: List.new(Integer, IntegerList);

/1l an infinite list of zeros
ZerolList: IntegerList.new(0, ZerolList);

[/l a "normal” list — (0,1,2)
finiteList: List.new(0, List.new(1, List.new(2, nil)));

In this example List defines an abstract data type: a list of objett$egerList spe-

cializeshead to create a new derived type: a list of integdrgegerList is a subtype
of List, just as it should beZeroList, in turn, is a subtype ontegerList. It represents
a type too: an infinite list of zeros.

Ohmu does not require any run-time storage to handle suaffiaité list of zeros;
the definition ofZeroList is encoded directly into the type system at compile-time.
ZerolList is an example of &azy data structurga construct found in several functional
languages, including Haskell. Such structures are oftefulifor representing abstract
concepts in a convenient way. Here’s a more complex examghie st of all natural
numbers:

NaturalList: {
head: Integer;
tail: new(head+1); Il lazy parameter
new: bind (head);

b
NaturalNumbers: NaturalList.new(0);

By encapsulating the set of natural numbers as a list, listgssing algorithms can
traverse it using the same interface as that for “normats lis

3.3 Inheritance

Points and lists are simple classes with only a few data mesnbethdind syntax that
I have used up until this point is reasonably convenienth\iditge classes, however, it

76

is not so convenient, for one simple reason. Bhrel command emulates a functional
syntax — it accepts an ordered list of arguments, and majbspezsition in the list to a
name in the structure. The expresdiamd (x,y,z), for instance, binds the first argument
to x, the second tg, and so on.

A functional syntax is appropriate when the number of patansés small, because
itis simpler to list things in order than it is to specify théyname. When the number of
parameters grows large, however, passing around longfiatguments is both difficult
and error-prone. The extreme example would be method avegrduring inheritance;
trying to create a derived class by passing it an orderedfliai methods would be an
interface disaster.

Moreover, creating a derived class usually involves odarg only some of the
definitions in the class, while leaving the others unchanged this reason, Ohmu
supports an alternate inheritance-like syntax in whictapeaters can be specialized by
name:

XPoint: transform Point { y: 0; };

This is an alternative way to declare tkBoint prototype that | described earlier. Only
needs to be specializedremains unchanged. The semanticgafnsform is identical
to bind ; it differs only in syntax.

3.4 Function Currying

This form of binding resembles another feature commonhnébin functional lan-
guagesfunction currying Function currying is a technique wherein a function with
multiple arguments can be logically represented as a higidar function with only

a single argument. Ordinarily, a function witharguments binds all of its arguments
at once, and then returns a result. A curried function bitslBrst argument, and then
returns another function of — 1 arguments. It does not compute its “real” result until
all arguments have been bound.

Ohmu structure transformations operate in a similar mamieding one parameter
to a more specialized definition simply returns anothercétme. There are two main
differences between function currying and structure fiamsations. The first is that
transforming a structure with parameters will return another structure wittpara-
meters, not, — 1 parameters. This difference is due to the fact that the peatens
in an Ohmu structure can be re-bound multiple times, so tisenet necessarily any
well-defined point in the life of a structure when all paraenetcan be said to be “fully
bound”.

The second difference is that structure transformationsbéad parameters out of
order and by name, whereas a curried function can only bigdinaents in the order in
which they are declared.

3.5 More Inheritance

Even this modified definition of function currying is not a colete description of OO
inheritance. | have spent a great deal of time up until thimtpdiscussingoinding,
because that is the area where the various OO and functionstracts differ the most.

77

Nevertheless, OO inheritance involves more than just niediverriding; it also allows
new methods to be added to a structure. Inheritance is a cetidm of two operations
— aggregation and specialization. Tihied andtransform keywords only implement
specialization. They can be used to modify existing paransebut they cannot be used
to add new ones, and they are thus insufficient to fully imgetinheritance.

The Ohmu language, however, already supports aggregatiervery act of declar-
ing a new structure groups a set of simpler objects into a comg aggregate. Object
oriented inheritance can thus be emulated by combininggbeperations. A true de-
rived class is created by first transforming the base clasktreen embedding it within
a new structure. Thextends keyword, which is syntactically the sameteensform ,
will set up an appropriate embedding:

Point: Struct {
X,y: Number;

b
Pixel: Struct { /Il create new structure
extends Point { /Il transform base class
X,y: Integer; Il specialize x and y
}
color: Integer; // add a color parameter
s

Theextends keyword will also do something thatansform does not do — it deals
with multiple inheritance in an appropriate manner. Like@3, Ohmu supports multi-
ple inheritance byinearizingthe inheritance tree. Linearization solves the dreaded “di
amond” problem of multiple inheritance by transforming altiple inheritance graph
into a single inheritance tree.

Linearization is a good way to implement so-caltaikin classes. [2] Mixins are a
group of derived classes that all inherit from a common béagscEach mixin trans-
forms the base class in a certain way in order to add a paatiéediture. These features
can then be composed together by using multiple inheritd6¢&@he linearization al-
gorithm will order a set of mixin classes into a stack of sefitevlayers, where each
layer modifies the layers beneath it. [16] The same “diamaitem” that is regarded
as a flaw in inheritance by Java and C++ then becomes a powedufor feature
composition. [1]

The Ohmu implementation of linearization differs from CLO@&y in that it can be
used with more than just methods. Any parameter can be $igecialuring an Ohmu
structure transformation, and linearization will re-ard# such transformations.

3.6 Generic Classes and Virtual Types
Prototype specialization is general enough that it can deentttan simply emulate
standard OO inheritance; it can also emulate virtual typelsggneric classes. [17] The

List class in section 3.2 is one example of a generic class. érdiffom generic classes
in other languages because there is no explicit type paesfesy.List <T>) as would

78

be required in C++ or Java. Instead, thead parameter is specialized directly to a
subtype.

Explicit type parameters are still useful, however, whené¢hare several parameters
of a structure which must have matching types. In a complextyar class, for example,
the real and imaginary parts should have the same type:

Complex: Struct { /l a "generic class”
NumType: Number; /l type parameter
real , imag: NumType;
of : bind (NumType);
new : bind (real ,imag);

s

/1 this redefines real and imag
ComplexFloat: Complex.of (Float);
CO: ComplexFloat.new(0, 0);

TheComplex class defined here is a more traditional generic class, wiselNumType
as a type parameter. Threal andimag members are both declared to be of type
NumType, so they are guaranteed to be type-compatible.

The main difference between this class and its C++ or Javigagut is thaNumType,
real, andimag are all declared in the same way. There is nothing in thisadatibn
(such as aemplate ortypedef) to indicate thaNumType is a type parameter, while
real andimag are data members. The difference between the three lies indl they
are used, not the way they are declared.

This declaration does establish an internal dependenaeleeNumType real/imag.
WhenNumType is specialized fromNumber to Float, the types ofreal andimag
must be updated accordingly. Such updates of internal digpeies are a necessary
consequence of usingrtual types[17] [9]

Virtual types are declared just like virtual methods, bwitimplementation is
more difficult. Virtual methods use late binding, which mgd&mat the choice of which
method to call is deferred until run-time. This is generatgcomplished by storing
methods in a virtual method table, and doing pointer loolatpsin-time to select the
correct one. In C++, the act of declaring a new class will re@anew virtual method
table.

Virtual types, on the other hand, have compile-time depeoiés associated with
them that cannot be deferred. When a virtual type is oveeriddll variable and method
signatures that rely upon that type will change. Like C++piate instantiations, bind-
ing a virtual type to a new definition will thus force a re-catapon of any affected
code. The only alternative to recompilation is to abandaticstype safety and have the
compiler insert run-time type checks.

The Ohmu language actually uses both mechanisms. When &@@elass is spe-
cialized at compile type, lik€€omplexFloat above, the compiler will recompile and
statically type-check the new version. If the special@atis done at run-time, such
“type binding” will be deferred by inserting run-time typéecks. Since most new
classes are declared at compile-time, run-time checkstaers required.

79

4 Partial Evaluation

The issue of virtual types highlights another facet of ugingtotypes, and that is that
there is no clear difference in Ohmu between run-time andpilertime code. In a tra-
ditional language, function calls and class instantiati@run-time operations, whereas
inheritance and template instantiation are compile-tiperations. Since Ohmu uses a
single operation, binding time is undefined.

In an interpreted language this is not an issue, becausgtkiray happens at run-
time. In order to compile code, however, certain compuitatimust be shifted to compile-
time. The Ohmu language usepartial evaluationengine to accomplish this task. [10]

Partial evaluation is the cousin t#zy evaluationwhich is implemented in many
functional languages. One major advantage of the fundtfjregramming style is that
because there is no run-time state, the time when compnsaliappen is irrelevant.
During lazy evaluation, computation is deferred until @faime. There are many cases,
such as the infinite lists described earlier, where this @eguite useful; computation-
ally expensive (or even infinite) calculations are only parfed “as needed”, and may
be avoided altogether.

Partial evaluation could also be called “greedy evaludtienthe opposite of lazy
evaluation. It works by locating invariant data, and perfiomg computations with that
data immediately at compile-time. In Ohmu, both constantsabstract prototypes are
regarded as invariant. In fact, all the examples | have gito this point have been
compile-time operations. A declaration such as:

x: Integer;

definesx as amabstractinteger; it does not defineas a variable. Any attempts to mod-
ify the value ofx will generate an error. The paramexecan be bound to a subtype in
derived structures, but parameter binding is not a desteicperation. The declaration

origin: Point.new(0,0);

creates a new objedrigin in which x andy have been redefined; it does not modify
Point.x or Point.y. Note that theorigin object declared here is a constaatigin .x
and origin .y are permanently bound to 0, and that binding is performeaapie-
time.

Run-time operations are those which involve variables. Aatde in Ohmu is de-
clared with a range and an initial value. The value may chawgethe course of exe-
cution, but it is constrained to be a subtype of the range:

x: Integer => 0; // integer variable

X = 1; /] set x to 1

Any Ohmu expressions which involves variables will be defduntil run-time because
such expressions are time-dependent. The result compytedvariable expression
depends on exactly when it is evaluated in the course of éxecilne program.
Expressions which involve only constants and abstractstgpe known aswvariant
expressionsSince such expressions don’t read from any variables,at thmt matter
when they are evaluated. The Ohmu compiler includes aril&died interpreter, and it

80

will pre-compute all invariant expressions by invoking theerpreter at compile-time.
For example:

x: 0;

y: 1;

z: Integer => 2,

a: sqrt(x*sx + yxy); /I (compile—time) =1

b: sqrt(xxx + zxz); [l (run—time) = sqrt(zxz)
myPoint: Point.new(x,y); /! compile—time
herPoint: Point.new(x,z); /1 run—time

ComplexFloat: Complex.of (Float); // compile—time

Run-time expressions use lazy evaluation, and the reseliatiating such an expres-
sion will always take the current values of variables intocamt:

do {
z = 1;
print(b); [l prints 1 i.e. sqrt(l)
print(herPoint.r); // prints 1
z = 2;
print(b); /l prints 2 i.e. sqrt(4)
print(herPoint.r); // prints 2

b

Run-time expressions such hsand herPoint in the example above act like simple
functions that take no arguments; they will be re-evaluaiaech time they are called.
The semantics of run-time expressions and compile-timeessppns are exactly the
same; it's just that the value of a compile-time expressidimgver change because its
arguments never change.

Note also that in order to set the valuemfwe must place the statement= 1
into an imperative statement list. Since expressions cavalkiated in any order, ex-
pressions are not allowed to change the state of a prograly s@tements, which are
ordered, are allowed to modify state. C-style calls suckoas(x++) are not allowed.

4.1 Structure Transformations

Partial evaluation becomes even more powerful when it iskéoed with structure
transformations. Consider the following example:

foo: Struct {
X,y: static Float => O0;
r: sqrt(x«x + yxy);

b

bar: transform foo {
X,y: static Float => 1;

81

}

foo.r; // r = 0, compile—time
bar.r; // r = 1.41... compile—time

In this examplefoo defines< andy as constants. Thetatic keyword freezes a variable
so that it can no longer vary. Ohmu provides several such &sysuo allow fine-tuning
of the partial evaluation process.

The reason for using “static variables” (yes, it's an oxyorris that a variable
(whetherstatic or not) can be specialized in derived classes to any othaewaithin
the same range. bo.x were declared as a simpleit could never be changed; no
other number is a subtype 6f Static variables are thus an implementation of “virtual
constants.”

In any casefoo.r will be partially evaluated because it is an invariant espren.
Yet whenbar redefinesx andy, that will affect the value obar.r. Thebar structure
cannot simply inherit as-is; the partial evaluation engine must detect the chande
re-evaluate all relevant expressions.

This is the same problem | discussed in section 3.6 with cegawvirtual types.
Internal dependencies can take many forms. In general,evieetthe partial evaluation
engine reduces an expression, it creates an internal depey@nd the partial evaluator
must record such dependencies so that it can update theer#élgvant parameters are
overriddenin derived structures. Fortunately, this dejeecy tracking is only necessary
at compile-time, and it incurs no run-time overhead.

4.2 Virtual Classes

In addition to supporting virtual types, Ohmu supportsuaitclasses. [13] A virtual
class is simply a class definition that is nested inside anatlass:

List: Struct {
DataType: Object; /I type parameter
of: bind (DataType);

Node: Struct {
item: DataType;
next: Node;

T

begin: Node;
b
This is an alternate definition of a linked list class which&ees like a container instead

of a stream. It encapsulates the list behavior by declarngternalNode class. Since
Node is a virtual class, it can be overridden just like any otheapzeter:

DoubleList: Struct {
extends List {
Node: Struct { Il specialize Node

82

extends parent .Node; // parent refers to List
prev: Node; /] add another parameter
b
}s

end: Node;

b
This definition of a doubly linked list simply inherits frorhe singly-linked version.
It adds aprev parameter tdNode, and anend parameter to the container. Note the
use of theparent keyword, which refers the the original definition Nbde. It is a
bad idea to refer to a base class by name, because doing sodueslthe structure of
the inheritance hierarchy and thus prevents the use of miféh Usingparent .Node
instead ofList.Node also resolves some subtle errors related to lexical scaiedm
crop up when specializing a virtual class.

Other than that, there is nothing special about this degfimitf a doubly linked
list; it is simple and easy to understand. It is also impdsgib write in a traditional
OO language like Java or C++. There are two internal depaneiehereNode.prev
and List .begin, which are both declared as typlode. Since C++ does not support
virtual types, it cannot update type dependencies. If tbecwere written in C++,
DoubleList would inherit the original type declarations filode.next andbegin. In
other words, althoughode.prev andDoubleList.end would refer to doubly-linked
nodesNode.next andDoubleList.begin would still refer to singly-linked nodes, and
it would necessary to constantly downcast frast .Node to DoubleList.Node in
order to traverse the list.

Despite the fact that lists are among the most basic of all dauctures, stan-
dard OO inheritance cannot cope with a simple inheritarle¢ioaship between singly-
linked lists and doubly-linked lists. This sort of headaploits to a fundamental flaw
in current OO languages — the fact that inheritance can agdy with virtual methods,
not virtual types. By unifying functions and classes, thisljem can be resolved.

5 Conclusion

The Ohmu language is interesting from a theoretical staindjbecause it unifies the
functional and object-oriented paradigms. Instead ofitarklasses and inheritance
onto a functional language as separate constructs, itéstae traditional typed lambda
calculus so that OO concepts can be represented in natuyalAwaass is a second-
order function. An instance is the activation record of action. OO inheritance can
be modeled, in part, as a variation of function currying.

It should be noted that the use of a partial evaluation engjseprovides a natural
division between the imperative and functional progranpagadigms. Code that is
partially evaluated at compile-time must use a pure funetictyle, because there is
not yet any run-time state to modify. Run-time code is freede imperative concepts.

Unifying functional and OO paradigms also has practicalliappon, because it
simplifies several design patterns. [7] For example, thetr@bs Factory and Factory
Method design patterns are necessary only because traditO classes cannot be

83

virtual. In Java and C++, all classes must be specified at deftime. The factory
design patterns are forced to hide class instantiatiomidelirtual methods so that the
choice of which class to instantiate can be deferred untitione. The Ohmu language
supports virtual classes and class parameters nativelyissextra level of indirection is
unnecessary. The Prototype design pattern has likewiseibeerporated directly into
the type system.

In a more general sense, unifying methods and classes ntek€&himu language
scale-independent. In a traditional OO language, methoels@mbined into classes,
classes are combined into frameworks, frameworks are awedbnto libraries, etc. At
each level of the hierarchy, the programming constructog@edations change, and this
makes it difficult to create complex, large-scale programs.

This is a general problem with mainstream OO languages.d®bjgented inheri-
tance is a powerful tool for manipulating individual classeut most solutions, includ-
ing almost all design patterns, require a framework of eténg classes. Mainstream
OO languages do not provide any real mechanism for manipglatich frameworks.
[15] As a result, a whole slew of new programming paradigmehsas aspect-oriented
programming, [12] component-based programming, [1] feahased programming,
etc. have been proposed to provide operations on classvirarke

If classes can be treated as functions, however, then a Bgerdcting classes is no
different from a set of interacting methods. A set of intéragmethods, in turn, is just
a class — the precise construct that standard object-edegabgramming is designed
to handle. Unifying functions and classes thus resolves jamaaitstanding problem
that has crippled the OO programming paradigm.

84

Bibliography

[1] Don Batory and Sean O’Malley. The Design and Impleméortedf Hierarchical
Software Systems with Reusable Components. ACM Transectio Software
Engineering and Methodology, 1(4):355-398, October 1992.

[2] G. Bracha and W. Cook. Mixin-Based Inheritance. JointM\Conference on
OOPSLA and ECOOP, 1990.

[3] Gilad Bracha, Martin Odersky, David Stoutamire, andliphiVadler. Making the
Future Safe for the Past, Adding Genericity to the Java Rragring Language.
Proceedings of OOPSLA '98.

[4] Guiseppe Castagna. Covariance and Contravariancefli@diithout a Cause.
ACM Transactions on Programming Languages and Systems, 199

[5] Czarnecki and U. Eisenecker. Generative Programmingthids, Techniques,
and Applications. Addison-Wesley, 2000.

[6] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classed 8fixins. ACM Sympo-
sium on Principles of Programming Languages, pages 17 11588.

[7] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissi@Grady Booch. De-
sign Patterns: Elements of Reusable Object-Oriented GoftwAddison Wesley,
Mass. 1995.

[8] Paul Hudak, John Peterson, Joseph H. Fasel. A Gentleduttion to Haskell,
available at http://www.haskell.org/tutorial

[9] Atsushi Igarashi and Benjamin Pierce. Foundations fdual types. Technical
report, University of Pennsylvania, 1998.

[10] Neil Jones, Carsten Gomard, and Peter Sestoft. PEr&lation and Automatic
Program Generation. Prentice Hall, 1993.

[11] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Arthef Metaobject Proto-
col. The MIT Press, Cambridge, MA, 1991.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lg@e-M. Loingtier, and
J. Irwin. Aspect-oriented programming. Proceedings of BXEO97.

[13] O.L. Madsen and B. Mgller-Pedersen. Virtual classepoverful mechanism in
object-oriented programming. Proceedings of OOPSLA '89.

[14] Ole Lehrmann Madsen, Birger Mgller-Pedersen, Kristépgaard. Object-
Oriented Programming in the BETA Programming Language.igad\Wesley
and ACM Press, 1993 ISBN 0-201-62430-3

[15] Gail Murphy and David Notkin. The Interaction Betweetat® Typing and
Frameworks. Technical Report TR-93-09-02, University oishington, 1993.
See also: The Use of Static Typing to Support Operations ameworks. Object-
Oriented Systems 3, 1996, pp. 197-213.

[16] Yannis Smaragdakis and Don Batory. Implementing Lagiddesigns with Mixin
Layers. Proceedings of ECOOP, 1998.

[17] K. K. Thorup and M. Torgersen. Unifying Genericity — Cbining the Benefits
of Virtual Types and Parameterized Classes. Proceeding€6iOP, 1999.

85

86

An Analysis of Constrained Polymorphism for
Generic Programming

Jaakko Jarvi, Andrew Lumsdaine, Jeremy Siek, and Jerewiidock

Open Systems Lab
Indiana University
Bloomington, IN USA
{jajarvi,lums,jsiek,jewillco }@osl.iu.edu

Abstract. Support for object-oriented programming has become agriatgart
of mainstream languages, and more recently generic progiggnhas gained
widespread acceptance. A natural question is how theseavealigms, and their
underlying language mechanisms, should interact. Onépkat design option,
that of using subtyping to constrain the type parameterenégc functions, has
been chosen for the generics extensions to Java and C#. ddiadealternative
to subtype-based constraints is to use type classes, aartheglled in Haskell,
or concepts, as they are called in the C++ generic prograpmeommunity. In
this paper we argue that while object-oriented interfacescmncepts are similar
in many ways, they also have subtle but important differsiticat make concepts
more suitable for constraining polymorphism in genericgpaomming.

1 Introduction

Generic programming is an emerging programming paradignwfiing highly re-
usable libraries of algorithms. The generic programmingregach has been used ex-
tensively within the & community, in libraries such as the Standard Template Li-
brary [31, 30], Boost Graph Library [28] and Matrix Templatirary [29]. Generic
algorithms are parameterized with respect to the typesedf &niguments so that a sin-
gle implementation may work on a broad class of differentiaxgnt types.

For modularity, it is important for generic functions to lypeé checked separately
from their call sites. The body of a generic function showddype checked with respect
to its interface, and a call to that function should be typeatied with respect to the
same interface. Separate type checking helps the authioe gineric function to catch
errors in its interface and implementation, and more inguty, provides better error
messages for incorrect uses of generic functions.

To provide separate type checking, a programming language have a mech-
anism for constraining polymorphism. Several mainstredjead-oriented languages
with support, or proposed support, for generics, such as &%, and Eiffel, implement
variations ofF-bounded polymorphis{é]. Haskell, a modern functional language, uses
type classe$34] as the constraint mechanism for polymorphic functidvik has pa-
rameterized modules, called functors, whose parameteisoastrained bgignatures
Other approaches inclugehere clause CLU [23]. C+ is an example of a language

87

without built-in support for constraints, and which has riect support for separate
type checking: the body of a generic function is type cheateshch call site.

In our recent study [14], we evaluated six mainstream prognang languages
with respect to their support for generic programming. Mai@am object-oriented lan-
guages did not rank highly in this evaluation; practicalgpeons encountered include
verbose code, redundant code, and difficulties in compa®pgrately defined generic
components. These problems relate to the constraint mechauused in the various
languages. Consequently, this paper focuses on the ditjtadfi different constraint
mechanisms for use in generic programming. We analyze mumanifestations of
subtype-bounded polymorphism in mainstream object-tettfanguages, as well as
other constraint mechanisms proposed in the literatume jcdentify the causes of the
above problems. We argue that the current implementaticswstype-based constraint
mechanisms in mainstream object-oriented languages aagoa hindrance to effective
generic programming; it proves difficult to organize coatts into well-encapsulated
abstractions. We describe how object-oriented languagds be adapted to avoid the
problems mentioned above. The inspiration for the propekadges comes from con-
straint mechanisms such as those in Haskell and ML, whicmatraffected by these
problems.

2 Background

We start with a short description of generic programmingl, thren describe two fam-
ilies of type systems/language mechanisms for suppor&émgigc programming. The
first family is based on just parametric polymorphism wheréfee second family is
based on subtype-bounded parametric polymorphism.

2.1 Generic programming

Generic programming is a systematic approach to softwargerdn particular, it fo-
cuses on finding the most general (or abstract) formulatidredgorithms and then
efficiently implementing them. These two aspects, gertgratid efficiency, are oppos-
ing forces, which is perhaps the most challenging aspeti®ptactice. The goal is for
a single algorithm implementation to be usable in as mangsidns as reasonably pos-
sible without sacrificing performance. To cover all sitoag with the best performance,
it is often necessary to provide a small family of generioalpms with automatic dis-
patching to the appropriate implementation based on thegpties of the input types.
There are several ways in which an algorithm can be made neorergl. The sim-
plest and most common method is to parameterize the typée aléments the algo-
rithm operates on. For example, instead of writing a mattiktiply function that works
only for matrices oflouble one can parameterize the function for matrices of any nu-
meric type. Another way in which algorithms can be paranisteris on the represen-
tations of the data structures they manipulate. For exarapieear search function can
be generalized to work on linked lists, arrays, or indeed seguential data structure
provided the appropriate common interface can be formdlatet another approach to
generalization is to parameterize certain actions takethélgorithm. For example,

88

in the context of graph algorithms, a breadth-first seard¢i)Balgorithm can invoke a
user-defined callback function when tree edges are disedvArclient could use this to
record the parent of each node in a BFS tree for the graph.fidheesult of this abstrac-
tion process should be an algorithm that places the minimumber of requirements
on its input while still performing the task efficiently.

Terminology Fundamental to realizing generic algorithms is the noticabstraction:
generic algorithms are specified in terms of abstract ptigseof types, not in terms of
particular types. In the terminology of generic programgniaconcepts the formal-
ization of an abstraction as a set of requirements on a typan(several types) [18, 1].
These requirements may be semantic as well as syntacticnéepb may incorporate
the requirements of another concept, in which case the @irstept is said toefinethe
second. Types that meet the requirements of a concept aréogaodelthe concept.
Note that it is not necessarily the case that the requiresrarae concept involve just
one type; sometimes a concept involves multiple types aadifgs their relationships.

A concept consists of four different types of requiremeassociated types, func-
tion signatures, semantic constraints, and complexityajuaes. Thassociated types
of a concept specify mappings from the modeling type to atbaborating types (such
as the mapping from a container to the type of its elements. flinction signatures
specify the operations that must be implemented for the tmagype. Asyntactic con-
ceptconsists of just associated types and function sighatutesreas aemantic con-
ceptalso includes semantic constraints and complexity guaesnitl8]. At this point
in the state of the art, type systems typically do not incledmantic constraints and
complexity guarantees. For this paper we are only concenithdsyntactic concepts,
so “concept” will mean “syntactic concept.”

Generic programming requires some kind of polymorphisnh@implementation
language to allow a single algorithm to operate on many typke remainder of this
section reviews different language mechanisms and tygersgshat support polymor-
phism.

2.2 Parametric polymorphism

Generic programming has its roots in the higher-order @nagning style commonly
used in functional languages [19]. The followirigd function is a simple example of
this style: functions are made more general by adding fangbarameters and type
parameters. In this example we parameterize oTthadlIter types and pass in func-
tions for comparing elementgd and for manipulating the iteratonéxt, at.end, and
current). This style obtains genericity using only unconstrainadametric polymor-
phism. For purposes of discussion we take the liberty ofreditey C# with polymorphic
functions, function types, and type aliases as class member

Iter find <lter>(lter iter, Iter.value_type X, ((Iter.valuetype, Iter.valuetype)— bool) eq,
(Iter — Iter) next, (Iter — bool) atend, (Iter — Iter.value.type) current)

for (; lat _end(iter); iter = next(iter)){
Iter.value_type y = current(iter);

89

if (ea(x, y))
break;
}

return iter;
}

bool inteq(inta, intb){ returna==b; }

class Arraylterato T> {
typedef T valuetype; ...

}

Arraylterator<T> array_iter_next<T>(Arraylterator<T> iter) { ... }
bool array.iter_at end<T>(Arraylterator<T> iter) { ... }
T array.iter_current<T>(Arraylterator<T> iter) { ... }

void main() {
int[] array = new int[]{1, 2, 3, §;
Arraylterator<int> i(array);
i =find(i, 2, int_eq, arrayiter_next, array.iter_at.end, arrayiter_current);

}

This example demonstrates one obvious disadvantage ofgherforder style: the
large number of parameters fiamd makes it unwieldy to use. One solution to this prob-
lem is to introduce where clauses (various forms of whichlwafound in CLU [23],
Theta [11], and Ada [33]). A where clause is a list of functggnatures in the dec-
laration of a generic function which are automatically ledlkup at each call site and
implicitly passed into the function. This makes calling gea functions less verbose.

Iter find <lter, T>(lter iter, T X)
where bool eq(T, T), Iter next(lter), bool aend(lter), T current(lter)

{..}

bool eq(int a, int b){ return a ==b; }

class Arraylterato T> { ... }

Arraylterator<T> next<T>(Arraylterator<T> iter) { ... }
bool atend<T>(Arraylterator<T> iter) { ... }

T current<T>(Arraylterator<T> iter) { ... }

void main() {
int[] array = new int[]{1, 2, 3, §;
Arraylterator<int> i(array);
i = find(i, 2);
}
The addition of where clauses is not a fundamental chandeetdype system of the
language; it is syntactic sugar for explicitly passing thiedtion arguments.

2.3 Concepts

Similar sets of requirements often appear in many genemictions, so grouping related
requirements together has software engineering beneditexXample, in a generic li-

90

brary such as the<€Standard Library, all functions on sequences include requénts
on their iterator parameters. Where clauses do not providayato group and reuse
requirements. This is the role played by concepts. In tHevi@hg example we create
two concepts: one for expressing the comparison requirgraad one for grouping
together the iterator operations. We are again using the $yagax of C#, but this time
extended with concepts (we define the semantics of conceptsi this section).

concept ComparableT> {
bool eq(T, T);

}

concept Iteratok Iter> {
type Iter.valuetype;// Require an associated type

Iter next(Iter);
bool atend(lter);
value_type current(lter);

}

Iter find <lter, T>(lter iter, T X)
where T models Comparable,
Iter models Iterator,
Iterator(lter).value_type ==T

(..}

A model of a concept is a set of types and a set of functionstiest the require-
ments of the concept. Some languages link implementatmr®ncepts through an
explicit models declaratioiicf. Haskell instance declarations). At the call siteffod,
for each concept requirement, a corresponding modelsré¢icla must be found.

int models Comparable
bool eq(int a, int b){ returna==b; }

}

class ArraylteratoxT> { ... }

forall <T> Arraylterator<T> models Iterator{
type valuetype = T;
Arraylterator<T> next(Arraylterator<T> iter) { ... }
bool atend(Arraylterator<T> iter) { ... }
value.type current(Arraylteratoc T> iter) { ... }
}
void main() {
int[] array = new int[]{1, 2, 3, §;
Arraylterator<int> i(array);
i = find(i, 2);
}
The expressionterator(lter).value.type in the constraints fofind accesses the
value_type type definition from within the models declaration fiber. This mecha-

nism provides a way to map from the primary types of the contethe associated
types.

91

Analogously to inheritance, concepts can be built from otoacepts using refine-
ment. A simple example of this is the followigjdirectionallterator concept.

concept Bidirectionallteratok Iter> : Iterator <Iter> {
Iter prev(lter);

}

One important observation about concepts is that they argypes. They can not
be used as the type of a parameter, or to declare a variabléh&anathematically
oriented, a concept is a set of multi-sorted algebras [18LidgRly speaking, a multi-
sorted algebra corresponds to a module: it is a collectichatd types (the sorts) and
functions (the operations of the algebra). Earlier we defmeoncept as requirements
on one or more types. The correspondence between these finitiaies is the classic
identification of a set with the predicate that specifies Wielements are in the set (the
elements in this case are modules).

In practice it is convenient to separate the data types of @uhednto two groups:
the main types and the associated types. An example of tlais iterator (the main
type) and its element type (an associated type). In a geakgicithm such adind, a
common need is the ability to obtain an associated type dhvemain type. A module
then consists of a partial map from identifiers (names foo@ased types) to types
asc(M) : Id — Type, and a partial map from function signatures (the name, patam
types, and result type) to function implementatian@/) : S — F.

We formally define a concept as a predicate on sonmeain types and a module
M: C(t,M) = AANF AST whereA is of the form# C dom(asc(M)) (wherez are
the associated types required &Y, F is of the forms C dom(X(M)) (wheres are
the function signatures required I6§), andS7 is of the formr = A--- A7, = 7/,
(where ther; andr/ for i = 1...n are pairs of type expressions which are required to
be equal). The following is thierator concept expressed using this notation:

Iterator(lter,M) =

{value.type} € dom(asc(M))A

{ next : Iter — lIter, at_end : Iter — bool, current : lter —
asc(M)(valuetype)} C X(M)

In the previous example, the body of the models declaration

forall <T> Arraylterator<T> models Iterator{

type valuetype = T;

Arraylterator<T> next(Arraylterator<T> iter) { ... }

bool atend(Arraylterator<T> iter) { ... }
value.type current(Arraylterato T> iter) { ... }

}
can be viewed as a parameterized module with the followihgfdenction signatures:

ArraylterModule = A T.
({(valuetype, T},
{

next : Arraylterator<T> — Arraylterator<T> = ...,
atend : Arraylterator<T> — bool = ...,
current : Arraylterator<T> — valuetype = ...

)

92

So for any typ€T, Iterator(Arraylterator<T>, ArraylterModule<T>) is true. We
formally define that a sequence of typemgether with a modulé/ models a concept
cwhenc(f, M) is true. We often say that a sequence of types models a coteaghg
out mention of the module of functions. This abbreviatedfas writtenc(f) and means
that there is a models declaration in scope that associateisad associated types and
functions with the typeg and concept.

A conceptc refines another concegt, denoted by: < ¢, if V£, m. ¢(f, m) implies
¢ (t,m).

To describe concept-bounded types (and later subtypedaai)mve use the general
setting ofgualified type$16] to allow for a more uniform presentation. A qualified &/p
is of the formP => 7 whereP is some predicate expression anid a type expression.
The intuition is that ifP is satisfied therP => 7 has typer. A qualified polymorphic
type is then written

Vt. P=>rT1 (1)
or with multiple type parameters
Vi. P =>1)

A concept-bounded type is a qualified type where the preglicaite models asser-
tions. So concept-bounded polymorphic types have theviilig form.

VE el () A Acen(tn) =>T (3)

wheret; C {, the ¢;’s are concepts, and is a type expression possibly referring to
types int.

The above definitions describe the structural aspects oefimgdand refinement.
However, languages such as Haskell and the extended C#sopdpier use nominal
conformance. That is, in addition to the structural prapsrbeing satisfied, there must
also be explicit declarations in the program to establighnttodeling and refinement
relations.

Related constraint mechanismsHaskell and ML provide constraint mechanisms that
share much in common with concepts. The following examplettem in Haskell,
groups the constraints from the previous example into tyg&ses name@Gomparable
andlterator and then uses them to constrain fimel (Haskell is a functional language,
not object-oriented, and does not have object-orientgd-stasses). In the declaration
for find, theComparable T= part is called the “context” and serves the same purpose
as the CLU where clause. Thet type is made arinstanceof Comparableby pro-
viding a definition of the required operations. In generisgygamming terminology, we
would say thatnt models theComparableconcept. Note that Haskell supports multi-
parameter type classes, as seen intédrator type class below. The syntax- t below
means that the typas functionally dependent dnwhich is how we express associated
types in Haskell.

93

class Comparable t where
eq:t— t— Bool

class Iterator i t| i — t where
next:i—i
atend ::i — Bool
current:i — t

find :: (Comparable t, Iteratorit)= i — t— i
find iter x =
if (at_end iter) || eq x (current iter) then
iter
else
find (next iter) x

instance Comparable Int where
eqij=(i==j)
Theinstancedeclarations can be more complex. For example, the follgaamditional

instance declaration makes all lisBomparable as long as their element types are
Comparable

instance Comparable £ Comparable [t] where

ML signaturesare a structural constraint mechanism. A signature desstite pub-
lic interface of a module, astructureas it is called in ML. A signature declares which
type names, values (functions), and nested structuresappstr in a structure. A sig-
nature also defines a type for each value, and a signaturadbrreested structure. For
example, the following signature describes the requireasn@iComparable

signhature Comparable =
sig

type ElementT

val eq : ElementT—ElementT—bool
end

Any structure that provides the tyjigementTand aneqfunction with the appropriate
types conforms to this signature without any explicit inst declarations. For exam-
ple:
structure IntCompare =
struct
type ElementT = int
funeqili2=...
end

2.4 Subtype-bounded polymorphism

For object-oriented languages, the subtype relation is@alachoice for constraining
generic functions. This section describes the various $avfrsubtype-bounded poly-
morphism that appear in mainstream languages and in thatlite.

94

Bounded quantification Cardelli and Wegner [7] were the first to suggest using sub-
typing to express constraints, and incorpordiednded quantificatiomto their lan-
guage named Fun. The basic idea is to use subtyping asseitidhe predicate of
a qualified type. For bounded quantification the predicatesestricted to the form
t < o wheret is a type variable and does not refer tad. So we have polymorphic
types of the form

Vi.t <o =>T[t] 4)

wheret is a type variableg is a type expression that does not refet tandr|[¢] is a
type expression that may refer ta.

Fun is an unusual object-oriented language in that subdgyipistructural, and there
are no classes or objects; it has records, variants, andsieeuypes. The idea of
bounded quantification carries over to mainstream objgenited languages, the main
change being the kinds of types and subtyping relationsarahguage. Subtyping in
languages such as+CJava, and C# is between classes (or between classes and inte
faces). The following is an attempt to write tfied example using bounded quantifi-
cation. There are two options for how to write teg method in thelnt class below.
The first option results in a type error because method pasasmay not be covariant
(Eiffel supports covariance, but its type system is unsd@ndl]). The second option re-
quires a downcast, opening the possibility for a run-timeegtion. This is an instance
of the classic binary method problem [5].

interface Comparable
bool eq(Comparable);

}

Iterator find<T : Comparable>(Iterator iter, T x) { ... }

class Int : Comparable{
bool eq(Inti){ ... } // Not a valid override
bool eq(Comparable ¢} ... } // Requires a downcast

}

F-bounded polymorphism Bounded quantification was generalizedRebounded
polymorphismby Canning et al. [6], which allows the left-hand side of atgping
constraint to also appear in the right-hand side, thus ergt#cursive constraints.

Vt. t < oft] => 7[t] (5)
Types that are polymorphic in more than one type can be esgddsy nesting.
(th. t1 < O'[tl] => (Vtg. to < U[tl, tg] => (Vtg. t3 < O'[tl, ta, tg] => T[tl, ta, tg])))

However, a constraint on typgg may only refer tot; and earlier type parameters.
The following example shows tHand example, this time written using F-bounded
polymorphism. We can now express the program without dostsca

interface ComparableT> {
bool eq(T);
}

95

interface Iterator<Iter, T> {
Iter next();
bool atend();
T current();

}

Iter find<T, lter>(lter iter, T X)
where T : ComparablecT>,
Iter : Iterator <lIter,T>
{..}
class Int : Comparablecint> {
bool eq(Inti){ ... }
}

F-bounded polymorphism in turn was generalized to systdmsutually recursive
subtyping constraints by Curtis [10, 12].r&cursively subtype-constrained tyseof
the formP => 7 whereP is a predicate of the formy < 7/ A--- A7, < 7/.Thena
recursively constrained polymorphic type is of the form

VETL STIA-- ATy <Th =>7 (6)

where the type variables incan appear anywhere in the type expressigns/, andr.
Recursively constrained polymorphic types, with some miestrictions, are used in
the generics extensions for Java and C#.

The following is an example of mutually recursive subtypesteaints. The inter-
face describing a graph node is parameterized on the edggeayg vice versa, and the
breadthfirst_searchfunction uses the two interfaces in a mutually recursivaifas

interface Node<E> {
public List<E> out.edges();

}

interface Edge<N> {
public N source();
public N target();

}

public void breadthfirst_search<N, E>(N n)
where N: Node<E>,
E: Edge<N> { ...}

2.5 Definitions of the subtype relation

Subtype-bounded polymorphism expresses constraintsd loasthe subtyping relation,
so the expressiveness of the constraints is very much depeod what types and sub-
type relations can be defined in the language. As mention8ddtion 2.4, much of the
literature on bounded and F-bounded polymorphism [7, 6] lesseguages with records,
variants, and recursive types and used a structural sulgfyplation. Mainstream lan-
guages like €, Java, and C# define subtyping as subclassing, a named suptg{a-
tion between object types.

96

For a typeB to be a subtype of some tygein a subtype relation that is based on
structural conformanc® must have at least the same capabilitied aSor example, if
Ais arecord type, theB must have all the fields @ and the types of those fields must
be subtypes of the corresponding fieldAinA subtype relation based on named con-
formance, on the other hand, requires an explicit dectarati addition to the structural
conformance requirement.

Mainstream object-oriented languages, such+gsl@va, C#, and Eiffel, unify sub-
typing with subclassing. The subtype relation is establisht the point of definition
of each class by declaring its superclasses. In partiagulamot possible to add a new
supertype to an existing class without modifying the dabnitof the class. Mecha-
nisms permitting suchetroactive subtypindor retroactive abstractiondeclarations
have been proposed and can be found in several programmmggdges, such as
Sather [26, 27] and Cecil [8].

3 Discussion

This section discusses problems arising in object-orgelaieguages when attempting
to follow the generic programming paradigm. Our earliedgtin [14] showed that
generic programming suffers from a set of distinct problentsose cumulative effect
is even more significant. As some of the symptoms, we obsemdibse code in the
form of excessive numbers of type parameters and constrawkward constructions
to work around language limitations, difficulties in libyanaintenance, and the forced
exposure of certain implementation details; the exampid44] clearly demonstrate
this.

We describe several extensions to Generic C# that lead ablydmproved support
for generic programming. We also describe a source-toesawanslation of some of
the extended features to current Generic C#.

3.1 Accessing and constraining associated types

Associated type constraints are a mechanism to encapsolaéaints on several func-
tionally dependent types into one entity. Section 2.3 gavexample of an iterator con-
cept and its associated typalue type As another example, consider the following two
concepts specifying the requirements of a graph type IfitcidenceGraphconcept re-
quires the existence of vertex and edge associated typeéplares a constraint on the
edge type:

concept GraphEdge Edge> {
type Vertex;
Vertex source(Edge);
Vertex target(Edge);

}

concept IncidenceGraph Graph> {
type Vertex;
type Edge models GraphEdge;
Vertex == GraphEdgecEdge>.\ertex;

97

type OutEdgelterator models lterator;
Iterator<OutEdgelterator>.value type == Edge;

OutEdgelterator outedges(Graph g, Vertex v);
int out_degree(Graph g, Vertex v);

}

All but the most trivial concepts have associated type meuénts, and thus a
language for generic programming must support their egmasOf mainstream lan-
guages, ML supports this via types in structures and sigest@+ can represent as-
sociated types as member typedefsraits classe$25] but cannot express constraints
on them. Java and C# do not provide a way to access and plas@aiots on type
members of generic type parameters. However, associgied tan be emulated using
other language mechanisms.

interface GraphEdge{ interface GraphEdge:Vertex> {
type Vertex; Vertex1 source();
Vertex source(); Vertexl1 target();
Vertex target(); }
}
interface IncidenceGraphk:
interface IncidenceGraph{ Vertex1, Edgel, OutEdgelteratord
type Vertex; where
type Edge : GraphEdge; Edgel : GraphEdge: Vertex1>,
Vertex == Edge.Vertex; OutEdgelteratorl :
IEnumerable<Edgel> {
type OutEdgelterator OutEdgelteratorl outedges(Vertex1 v);
: IEnumerable<Edge>; int out_degree(Vertex1 v);
}

OutEdgelterator outedges(Vertex v);
int out_degree(\Vertex v);

}

(a) (b)

Fig. 1. Graph concepts represented as interfaces which can cassigiated types (a), and their
translations to traditional interfaces (b).

A common idiom used to work around the lack of support for eisged types is to
add a new type parameter for each associated type. Thisagpi®frequently used in
practice. The C#numerable<T> interface for iterating through containers serves as
an example. When a type exteri@smumerable<T> it must bind a concrete value, the
value type of the container, to the type parame@térhe clasdjacencyLisfwhich ex-
tends thdncidenceGraphinterface, in Figure 2(b) is an example of the same situation
The following generic function, which hdacidenceGraphas a constraint, includes

98

an extra type parameter for each associated type. Thes@&rpmeters are used as
arguments tdncidenceGraphin the constraint on the actual graph type parameter.

G_Vertex firstneighbor< G, G_Vertex, GEdge, GOutEdgelterator-(G g, G.Vertex v)
where G : IncidenceGrapk:G_Vertex, GEdge, GOutEdgelterator> {
return g.outedges(v).Current.target();

}

The main problem with this technique is that it fails to ersdpte associated types
and constraints on them into a single concept abstracticeryeference to a concept,
whether it is being refined or used as a constraint by a geferation, needs to list
all of its associated types, and possibly all constraintgiose types. In a concept with
several associated types, this becomes burdensome. ixpgereent described in [14],
the number of type parameters in generic algorithms was oftere than doubled due
to this effect.

A direct representation for associated types could be atliékeneric C# as an
extension, providingnember typesimilar to those in €. In this extension, interfaces
can declare members which are placeholders for types, @teé glubtype constraints
on these types. Classes extending these interfaces muasstditrete values to these
types. As an example, Figure 1(a) shows two concepts frorddh®in of graphs. The
GraphEdgeconcept declares the member tygertex The IncidenceGraphconcept
has two associated typegertex andEdge Note the three constraint&dge must be
a subtype ofGraphEdge Vertex must be the same type as the associated type, also
namedvertex of Edge andOutEdgelteratormust conform tdEnumerable<Edge>.
The last constraint uses the standdedumerable interface which does not use the
member type extension; the two styles can coexist.

This representation for associated types can straighdiaty be translated into the
emulation using extra type parameters which was descriadige Figure 1(b) shows
the translated versions of the graph interfaces. In thisstegion, each interface con-
taining associated types has an extra parameter addeddorasaociated type. The
subtype constraints on the associated types are conversedbtype constraints on the
corresponding type parameters. In classes inheriting Booh interfaces, the associ-
ated type definitions are converted to type arguments ofrteefaces, as shown in
Figure 2(b). Generic functions using interfaces with aisged types also have an extra
type parameter added for each associated type (Figure 8(lillin the body and con-
straints of a generic function, references to associafeektgre converted to references
to the corresponding type parameters. Equality conssréietween two types are han-
dled by unifying, in the logic programming sense, the tratishs of the types required
to be equal. For example, the tygertexlis used both as theertexassociated type for
GraphEdgeand forincidenceGraphin Figure 1(b). Figure 2 shows the code defining
two concrete classes which extend the interfaceSfaphEdgeandincidenceGraph
both before and after translation. We used this translati@ssociated types, manually,
while implementing the graph library described in [14].

The advantages of the associated type extension becomanewten using inter-
faces to constrain type parameters of a generic algorittonsi@er thdirst_neighbor
function in Figure 3. The function has two parameters: algeapd a vertex. Using the
extension, shown in Figure 3(a), a single type parameterdeaoribe the types and

99

class AdjListEdge : GraphEdg¢ class AdjListEdge : GraphEdgeint> {
type Vertex = int;

}
t class AdjacencyList
class AdjacencyList : IncidenceGraph : IncidenceGraphxint, AdjListEdge,
type Vertex = int; IEnumerable<AdjListEdge> > {

type Edge = AdjListEdge; IEnumerable<AdjListEdge>

type OutEdgelterator = out.edges(Vertex ...}

IEnumerable<AdjListEdge>; int out_degree(Vertex vj...}

OutEdgelterator outedges(Vertex v§...} ~ }

int out_degree(Vertex vj...}

}

(a) (b)

Fig. 2. A concrete graph type which models tireidenceGraphconcept.

constraints of both of these parameters. In the translated @-igure 3(b)), a separate
type parameter is needed for each of the three associates ¢yphe graph type.

Note that the translated code is not valid Generic C#; we ssaraing that con-
straints on type parameters are propagated automaticaitythe interfaces which are
used, which is not the case in the current version of GeneticSEction 3.2 discusses
this issue in more detail.

G.Vertex firstneighbor<G>(G g, G.Vertex v) where G : IncidenceGraph
return g.outedges(v).Current.target();

}
(@)

G_Vertex firstneighbor< G, G_Vertex, GEdge, GOutEdgelterator-(G g, G Vertex v)
where G : IncidenceGrapk:G_Vertex, GEdge, GOutEdgelterator> {
return g.outedges(v).Current.target();

}
(b)

Fig. 3. A generic algorithm usingncidenceGraphas a constraint, both with (a) and without (b)
the extension.

Note that an interface that contains associated types isrditional object-
oriented interface; in particular, such an interface isagtpe. As the translation sug-
gests, these interfaces cannot be used without providitingremplicitly or explicitly,

100

the values of their associated types. As a consequencdairds with associated types
can be used as constraints on type parameters, but canneeteas a type for vari-
ables or function parameters — uses that traditional iatex$ allow. For example, the
function prototype in Figure 3(a) cannot be written as:

IncidenceGraph.Vertex firsheighbor(IncidenceGraph g, IncidenceGraph.Vertex v);

The references tmcidenceGraph.Vertexare undefined; the abstrdotidenceGraph
interface does not define a value for Wertexassociated type. This is a major differ-
ence between our translation and systems basetttoal types[24, 32]. In our trans-
lation, all associated types are looked up statically, aniths type ofg is the interface
IncidenceGraph not a concrete class which implemelmsidenceGraph On the other
hand, in systems with virtual types, member types are asgatwith the run-time type
of a value, rather than its compile-time type; thus, the fiamcdefinition above would
be allowed. The virtual type systems described in [24, 32hdbprovide means to
express the constraints in the previous examples in tyfeersanner. Ernst describes
family polymorphisnjl3], a type-safe variation of virtual types, for the prograing
language BTA. This is a related mechanism to the extension proposed beregre-
senting associated types in an object-oriented languagettr family polymorphism
can provide full support for associated types remains tosbkiated.

For the translation described here to work, it is importanbé able to infer the
values of associated types from the types bound to the mpa ggarameters. This is
not currently supported in Generic C# or Java generics. Asxample of this, consider
the following equivalent formulation of thfirst_neighbor function, which makes the
use of the associated edge type more explicit:

G.Vertex firstneighbor<G>(G g, G.Vertex v) where G : IncidenceGraph
G.Edge firstedge = g.outedges(v).Current;
return first_edge.target();

}

In a call tofirst_neighbor, a concrete graph type is bound® and thus associated
types, such a&.Edge can be resolved. In the translated version, however, #ss |
obvious that associated types can be inferred automaticall

G_Vertex firstneighbor< G, G_Vertex, GEdge, GOutEdgelterator-(G g, G Vertex v)
where G : IncidenceGrapk:G_Vertex, GEdge, GOutEdgelterator-

{
G_Edge firstedge = g.outedges(v).Current;

return first_edge.target();

}

The two type parameteG_Edgeand G_OutEdgelteratorare not the types of any of
the function arguments, and thus are not directly deducikdenfer their types, the
particular graph type used @must be examined to find its associated type definitions.
The associated types are expressed as type arguméntidenceGraphin an inher-
itance declaration. Inferring the associated types fromstraints is possible in most
cases, including all cases generated by the translati@mdiere, but is not supported
in the current proposals for Generic C# or Java generics.

101

3.2 Constraint propagation

In many mainstream object-oriented languages, the contstran the type parameters
to generic types do not automatically propagate to usesasetllypes. For example,
although a container concept may require that its itergqme tnodel a specified iterator
concept, any generic algorithm using that container canegigstill need to repeat the
iterator constraint. This is done for error checking: insts of an interface must always
be given correct type parameters, even within the definiioa generic method. The
burden of this is that the check is done when a generic methddfined, rather than
when it is used, and so the generic method ends up needingdatrihe constraints of
all of the interfaces which it uses.

For example, without constraint propagation, fingt_neighborfunction from Fig-
ure 3(a) would need to be written as:

G.Vertex firstneighbor< G>(G g, G.Vertex v)
where G : IncidenceGraph,
G.Edge : GraphEdge,
G.Edge.Vertex == G.\ertex,
G.OutEdgelterator : IEnumerablecG.Edge> {
return g.outedges(v).Current;

}

The problem with constraint propagation also applies tottaeslated version of
first_neighbor(cf. Figure 3(b)):

G_Vertex firstneighbor<G, G_Vertex, GEdge, GOutEdgelterator-(G g, G.Vertex v)
where G : IncidenceGraphk:G_Vertex, GEdge, GOutEdgelterator>,
G_Edge : GraphEdge:G_Vertex>,
G_OutEdgelterator : IEnumerable<G_Edge> {
return g.outedges(v).Current;

}

The additional constraints in these examples merely rgqpegterties of the asso-
ciated types ofG which are already specified by thecidenceGraphconcept. This
greatly increases the verbosity of generic code and adds égpendencies on the ex-
act contents of théncidenceGraphinterface, thus breaking the encapsulation of the
concept abstraction.

This is not an inherent problem in subtype-based constraéchanisms. For exam-
ple, the Cecil language automatically propagates comssrtn uses of generic types [8,

§ 4.2]. Constraint propagation is simple to implement: asea@ipproach is to automati-
cally copy the type parameter constraints from each interfa each of the uses of the
interface.

3.3 Subclassing vs. subtyping

The subclass relation in object-oriented languages is comhynestablished in the class
declaration, which prevents later additions to the set pestiasses of a given class.
This is fairly rigid, and as many object-oriented languagei$y subclassing and sub-
typing, the subtype relation is inflexible too. Several aushhave described how this

102

inflexibility leads to problems in combining separately defi libraries or components,
and proposed solutions. Holzle describes problems wittpament integration and sug-
gests that adding new supertypes and new methods to clagsmactively, as well as
method renaming, be allowed [15]. The Half & Half system [pas subtyping decla-
rations that are external to class definitions, as do thd 8@nd Sather [26, 27] pro-
gramming languages. Aspect oriented programming systehjsjuch as AspectJ [20],
can provide similar functionality by allowing modificatiofitypes outside of their orig-
inal definitions. Structural subtyping does not suffer fritea same problems. Baum-
gartner and Russo [3], as well as Laufer et al. [22], sugagding a structural subtyping
mechanism to augment the nominal subtyping tied to the itamae relation.

Constraint mechanisms more directly supporting concegpish as Haskell type
classes and ML signatures, do not exhibit the retroactivdetiiog problem: instance
declarations in Haskell are external to types, and ML sigreatonformance is purely
structural.

The work cited above is in the context of object-orientedgpamming, but the use
of the subtyping relation to constrain the type parametegeneric algorithms shares
the same problems. If an existing type structurally conotmthe requirements of a
generic algorithm, but is not a nominal subtype of the resfliinterface, it can not be
used as the type parameter of the algorithm. Current masnstiobject-oriented pro-
gramming languages do not provide a mechanism for estatjighis relation; types
cannot retroactively be declared to be models of a given e his problem of
retroactive modeling is described further in [14]. The ersh cited above has demon-
strated that retroactive subtyping can be implementedrfaigect-oriented language.

3.4 Constraining multiple types

Some abstractions define interactions between multipkepgeddent types, in contrast
to an abstraction with a main type and several associategbtyjn example of this is
the mathematical conceyectorSpacgmore examples can be found in [17]).

concept VectorSpaceV, S> {
V models Field;
S models AdditiveGroup;
V mult(V, S);
V mult(S, V);

}

For this example, it is tempting to think that the scalar tgpeuld be an associated
type of the vector type. For example, the classtrix<float> would only haveloat for
its scalar type. However it also makes sense to form a vegtmeswithmatrix<float>
andvectokfloat> as the vector and scalar types. So in general the scalar fype o
vector space is nateterminedoy the vector type.

It is cumbersome to express multi-parameter concepts wdijagrt-oriented inter-
faces and subtype-based constraints. One must split tlvepbimto multiple interfaces.

interface VectorSpacé/ector<V, S> : AdditiveGroup<V> {
V mult(S);
}

103

interface VectorSpaceScalar<V, S> : Field<S> {
V mult(V);
}

Algorithms that require th®ectorSpaceoncept must specify two constraints now
instead of one. For example:

Vector linear.combination2<Vector, Scalar-(Scalar alphal, Vector v1,
Scalar alpha2, Vector v2)
where Vector: VectorSpac¥ector<Vector, Scalar,
Scalar: VectorSpacsScalar<\ector, Scalar-
{

return alphal.mult(vl).add(alpha2.mult(v2));
}

In general, if a concept hierarchy has heightand places constraints on two types
per concept, then the number of subtype constraints neadmal algorithm i2™, an
exponential increase in the size of the requirement spatidit. Concept hierarchies of
height from two to five are common in practice, and we have entyed even deeper
hierarchies, bu2® is already a large number.

The constraint propagation extension discussed in Se8tfbameliorates this prob-
lem. TheVectorSpaceScalarinterface is attached to théectorSpaceévectorinterface
by the constraint on the type parameser

interface VectorSpacé/ector<V, S> : AdditiveGroup<V>
where S : VectorSpac&calarV, S>

V mult(S);
}

This prevents the exponential increase in the number ofirements, but the interface
designer must still split up concepts in an arbitrary fashichis problem could be over-
come by an automatic translation of multi-parameter cotscigppo several interfaces,
as done above. THamear_combination2 algorithm shown above needs only a single
constraint now.

Vector linear.combination2<Vector, Scalar-(Scalar alphal, Vector v1,
Scalar alpha2, Vector v2)
where Vector: VectorSpac¥ector<Vector, Scalar> {
return alphal.mult(v1l).add(alpha2.mult(v2));

}

4 Conclusion

The main contribution of this paper is to provide a detailedlgsis of subtype-based
constraints in relation to generic programming. We survegraye of alternatives for
constrained parametric polymorphism, including subtippeed constraints in object-
oriented languages. We identify problems that hinder &ffegieneric programming in
mainstream object-oriented languages, and pinpoint theesaof the problems. Some

104

of the surveyed alternatives, such as concepts, ML sigestand Haskell type classes,
do not exhibit these problems. Based on these alternatisedescribe solutions that fit

within the context of a standard object-oriented langusigedescribe an extension to
C# that adds support for accessing and constraining assddiges, constraint propa-

gation, and multi-parameter concepts. We outline a trénslaf the extended features
to the current Generic C# language.

Acknowledgments

We are grateful to Ronald Garcia for his comments on this pdjes work was sup-
ported by NSF grants EIA-0131354 and ACI-0219884, and byaatgrom the Lilly
Endowment. The fourth author was supported by a Departnidiriergy High Perfor-
mance Computer Science Fellowship.

105

Bibliography

[1] M. H. Austern. Generic Programming and the STLProfessional computing
series. Addison-Wesley, 1999.

[2] G. Baumgartner, M. Jansche, and K. Laufer. Half & Halfuliple Dispatch
and Retroactive Abstraction for Java. Technical Report @38RC-5/01-TR08,
Ohio State University, 2002.

[3] G. Baumgartner and V. F. Russo. Signatures: A languatgneion for improv-
ing type abstraction and subtype polymorphism in C-&aftware—Practice and
Experience25(8):863—-889, August 1995.

[4] K. B. Bruce. Typing in object-oriented languages: Aching expressibility and
safety. Technical report, Williams College, 1996.

[5] K. B. Bruce, L. Cardelli, G. Castagna, J. Eifrig, S. F. #miV. Trifonov, G. T.
Leavens, and B. C. Pierce. On binary methodeory and Practice of Object
Systemgsl(3):221-242, 1995.

[6] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. MitchelF-bounded poly-
morphism for object-oriented programming.Rroceedings of the fourth interna-
tional conference on functional programming languages eohputer architec-
ture, 1989.

[7] L. Cardelli and P. Wegner. On understanding types, dagiraction, and poly-
morphism.ACM Computing Survey47(4):471-522, 1985.

[8] G. Chambers and the Cecil Grouphe Cecil Language: Specification and Ratio-
nale, version 3.1University of Washington, Computer Science and Engimegri
Dec. 2002. www.cs.washington.edu/research/projedit/ce

[9] W. R. Cook. A proposal for making Eiffel type-safeThe Computer Journal
32(4):304-311, 1989.

[10] P. Curtis. Constrained quantification in polymorphic type analysisPhD
thesis, Cornell University, Feb. 1990. www.parc.xerormécompany/history/
publications/bw-ps-gz/csl90-1.ps.gz.

[11] M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes where clauses:
Constraining parametric polymorphism. @OPSLA pages 156-158, 1995.

[12] J. Eifrig, S. Smith, and V. Trifonov. Type inference fagcursively constrained
types and its application to OOP. Rroceedings of the 1995 Mathematical Foun-
dations of Programming Semantics Conferenadume 1. Elsevier, 1995.

[13] E. Ernst. Family polymorphism. IECOOR volume 2072 ofLecture Notes in
Computer Scieng@ages 303—326. Springer, June 2001.

[14] R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and Jladik. A comparative
study of language support for generic programmingOM@PSLA Oct. 2003. To
appear.

[15] U. Holzle. Integrating independently-developed gaments in object-oriented
languages. IiECOOR, volume 707 olecture Notes in Computer Scienpages
36-55. Springer, July 1993.

[16] M. P. Jones.Qualified Types: Theory and Practic®istinguished Dissertations
in Computer Science. Cambridge University Press, 1994.

106

[17] S. P. Jones, M. Jones, and E. Meijer. Type classes: doratpn of the design
space. IrHaskell WorkshopJune 1997.

[18] D. Kapurand D. Musser. Tecton: a framework for specifyand verifying generic
system components. Technical Report RPI-92—-20, Deparimfi€omputer Sci-
ence, Rensselaer Polytechnic Institute, Troy, New York802July 1992.

[19] A. Kershenbaum, D. Musser, and A. Stepanov. Highermrdperative program-
ming. Technical Report 88-10, Rensselaer Polytechnidisf 1988.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, JrRand W. G. Griswold. An
overview of AspectJLecture Notes in Computer Scien@®72:327-355, 2001.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. \p&s, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Aksit &dVatsuoka, editors,
ECOOR volume 1241 ofLecture Notes in Computer Sciengemges 220-242,
June 1997.

[22] K. Laufer, G. Baumgartner, and V. F. Russo. Safe stmattonformance for Java.
Computer Journal43(6):469-481, 2001.

[23] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Afastion mechanisms in
CLU. Communications of the ACN20(8):564-576, 1977.

[24] O. L. Madsen and B. Moller-Pedersen. Virtual classgsowerful mechanism in
object-oriented programming. MOPSLA pages 397-406. ACM Press, 1989.

[25] N. C. Myers. Traits: a new and useful template technig@e+ Report, June
1995.

[26] S. M. Omohundro. The Sather programming langua@®. Dobb’s Journa
18(11):42-48, October 1993.

[27] Sather home pages. www.icsi.berkeley.edather/.

[28] J. G. Siek, L.-Q. Lee, and A. Lumsdain&he Boost Graph Library User Guide
and Reference Manuahddison Wesley Professional, 2001.

[29] J. G. Siek and A. Lumsdaine. A modern framework for plolednigh performance
numerical linear algebra. IModern Software Tools for Scientific Computing
Birkhauser, 1999.

[30] A. Stepanov. The Standard Template Library — how do yoildban algorithm
that is both generic and efficienByte Magazing20(10), Oct. 1995.

[31] A. A. Stepanov and M. Lee. The standard template libraryTech-
nical Report HPL-94-34(R.1), Hewlett-Packard Laborasyi Apr. 1994.
(http://www.hpl.hp.com/techreports).

[32] K. K. Thorup. Genericity in Java with virtual types. ECOOR, volume 1241 of
Lecture Notes in Computer Scienpages 444-471, 1997.

[33] United States Department of Defensehe Programming Language Ada: Refer-
ence ManuglANSI/MIL-STD-1815A-1983 edition, February 1983.

[34] P. Wadler and S. Blott. How to make ad-hoc polymorphissslad-hoc. IACM
Symposium on Principles of Programming Languageges 60—-76. ACM, Jan.
1989.

107

108

Top-Down Decomposition in C++

Asher Sterkin and Avraham Poupko

NDS Technologies Israel Ltd.
P.O. Box 23012, Har Hotzvim
Jeruslaem 91235 Israel
asterkin@ndsisrael.com apoupko@ndsisrael.com

Abstract. This article describes how the Top-Down Decomposition apgin,
introduced by E.W. Dijkstra, can be implemented effecivasing the C++ pro-
gramming language. A brief outline of the Top-Down Deconifjmss process,
its advantages, and the most common misconceptions abisuagproach are
presented. The role of C++ language features such as texapéatd generic al-
gorithms is discussed. Prime Number Generator exercissed for illustrative
purposes. The first version is implemented in the most sttfmigvard way suit-
able for generating of 500 primes. The last version is fupyimized, making it
possible to generate all primes within the 32-bit range.

1 Introduction

The objective of this paper is to demonstrate how the bagieOown Decompaosition
approach could be applied, using the C++ programming lagguhe C++ Standard
Library, and Generic Programming approach.

The materials of this paper were used as a basis fédaanced C++ Programming
course taught by these authors, in the Hadassah Academég€plerusalem, as well
as for an internal workshop on the same topics, held in ND&A@logies Israel Ltd.

2 Top-Down Decomposition

Top-Down Decomposition is a way of developing software tigtoa number of itera-
tive steps, in order to increase developer productivityiamatove software quality. This
approach was initially introduced by E.W. Dijkstra [1, 2]asesponse to the so-called
"software crisis” of the late 1960s.

The Top-Down Decomposition process could be briefly oudias follows:

1. Start from a dummy, 'do-nothing,’ program
2. Address the project organization and version controldss
3. At each step:
(a) Implement the smallest possible piece of the progratheeadding detail to
the current level of abstraction or introducing a new one
(b) Compile and test
(c) If necessary, re-factor the code for optimization, bugdi and improved read-
ability

109

(d) Compile and test
4. Repeat the process until the whole program is completed

This approach provides the following advantages:

— High speed of development

— Small number of errors

— Early integration and testing

— Early demonstration/deployment

— Support for parallel development

— 'Just enough improvements’

— Strong feeling of 'flow’ and accomplishment

The main challenge in applying this approach is the ideatitin of the levels of
abstraction.

3 Top-Down Decomposition Misconceptions

The advantages of Top-Down Decomposition, detailed akereeregarded with skep-
ticism by many software developers because they are wanycafiing the extra over-
head required by introducing abstractions.

The Top-Down Decomposition approach encourages introduaddstraction layers
such that, at each step either a new abstraction layer sduded or a small portion
of an already existing layer is detailed. Each new abstradtiyer requires an inter-
face between itself and the layer above it. The interfacepsasented as a set of data
structures and functions for manipulating these data stres.

Software developers typically resist introduction of newdrs (and their attendant
functions), claiming that the layers incur too much overhaad citing concerns with
run-time efficiency. Additionally, even when they do agreértroduce additional ab-
straction layers, they don’t adhere to the required sejparbetween them - again citing
efficiency. This laxity is exacerbated by allowing shorgcaind jumps through multiple
layers - all the way to the lowest possible one.

These divergences are so ingrained in programming culbatesbftware develop-
ment folklore is full of stories about how thaurist layering approach failed due to
severe performance problems and how significantly betgrtsewere achieved with
theclose to hardwarepproach.

The problem with these claims is that they undermine the nggal of the Top-
Down Decomposition: namely, controlled complexity and seguentially, flawless
software. Perhaps the most damage caused by improper sitddre§efficiency issues
is to the very skill of using abstraction to fight complexity.

Although layers are used in modern software developmertipgain the form of
the architectural patternby that namel[3], they address the enterprise class software
coarse-grain structuring issues primarily in terms of @litity, reuse and packaging.
The whole number of layers is fixed and tends to be quite sr&&)(In other words,
the Layers architectural pattern does help with the softvegiganization but does not
deal at all with the problem and solution themselves.

110

The point is that at a certain level of complexity the abitibyproperly introduce
abstraction layers makes the whole difference betweerilgesnd impossible, rather
than between nice and ugly or efficient and inefficient. Thmber of abstraction layers
depends solely on the problem at hand and cannot be presanibevance.

Demonstrating how abstraction layers are introduced duha Top-Down Decom-
position process will constitute the central theme of tlaipqy.

As we explain below, the idea engrained in the minds of safivakevelopers-that
the Top-Down Decomposition approach is ineffective, isindact an inherent flaw in
the Approach. One of the main reasons that TDD is considerbé ineffective is the
lack of proper language constructs.

The remainder of this paper attempts to show that proper u€ao features, can
allow a developer to achieve the advantages of TDD, withawing the price that is
usually associated with layering. This will be done by preisg examples of correct
Top-Down Decomposition, where indeed the reader can sedhéee is little or no
runtime overhead.

4 The C++ Programming Language (Commonality and
Variability)

The C++ programming language is a suitable choice due tordag support for tem-
plates and inline functions, which almost completely etiate the layering overhead.
Appropriate usage of #define, templates and inline funsti@duces the effective run
time cost of many of the layers to near-zero. Additionahgit use makes it easier and
less costly to enforce pure layer separation.

The basic assumption is that certain aspects of each pragithimevitably change
during its lifespan. It's not a question of whether partstaf program will change, but
"which parts will change, and when: at run-time or at compitge?” On one hand, we
want to make our programs as general as possible, meaninguhprogram can be
configured at run time to support all kinds of behavior. Thi @iminate the need to
have different programs for different sets of data. On tieohand, the more assump-
tions we are able to make regarding the input, the less we toeehluate at runtime,
and the more efficient our program can run [4].

Making a decision where a particular variability point habe reflected is a classi-
cal flexibility vs. efficiency trade-off. The greater the nioen of variability points that
exist at the run-time, the more the computer resources @sI€3PU and memory) will
be consumed. Using the run-time only variability usuallgde to over-designed sys-
tems. The irony is that when some resources are scarce B kihugly optimization
tricks are applied. This in turn would lead to hard coding @ing variability points.
Very often, these points are the very points that we would ti leave as run-time
variants.

The C++ feature set encourages the developer to think in tmermsions simul-
taneously: compile time dimension and run-time dimensins]. For the later, the
whole set of virtual functions, polymorphism and run-tinfee) binding mechanisms
is provided in order to achieve a required level of flexiili€++ is not unique in this
category. Other languages such as Java and C# supply thdesaghef service.

111

However, if changes were to occur only during compilationgtj the great promise
of the object-oriented approach may incur an unacceptatglichead for many real ap-
plications. That's where C++ templates, function overlogdstatic (early) binding,
and inline functions become very handy. Today, these caapmique features of C++
1

The good news about C++ is that it comes with a powerful stahlidzaary [6]. This
library significantly simplifies and, to a certain degreeedis the Top-Down Decom-
position process.

The C++ Standard Library contains a group of efficient tert@pslzased implemen-
tations of general-purpose containers suclvexstorandlist, and a group of generic
algorithms such asopy, searchandsort. Apparently, the C++ generic algorithms turn
out to be the central part of the software development peygesviding a set of generic
skeletons that the application-specific code can be stifted This meshes well with
the Top-Down Decomposition process, as we shall see in theesuent sections.

5 Prime Number Generator

In order to be able to demonstrate the Top-Down Decompaositoproach we will use
this evergreen exercise. Interesting enough, it has beemysalused for the demon-
strating the Top-Down Decomposition approach by Dijkstoarf his first paper on the
subject [1].

6 Problem Statement

Compute and print a table of the first 500 prime numbers, ggdin 10 columns, each
listing 50 prime numbers.

Definition 1. An integer number is a prime if it can be divided wholly (wigminder
0) only by 1 and itself. Example: 3571. 0 and 1 are not considéo be primes.

7 Step 1: Dummy, ‘Do Nothing’ Program

The first step is to write a dummy program, which does nothinglmost nothing
and just helps with establishing the development envirarimgs a good time for ad-
dressing the configuration management issues such as psiths (make) and version
control.

In the case of the Prime Number Generator its first dummy eergiill look as
follows:

Although this piece of code indeed does almost nothing, @sdprovide a firm
foundation for everything that follows. It embodies key id@ns, such as coding stan-
dard, text editor, compiler, build-system and version oainAdopting the 'do-nothing’

1 Using C++ does not come for free. Probably the most unfoteufact about C++ is that's its
syntax is littered with many complications, the major buflndich are caused by the need
to be backward compatible with "C”. A simple, powerful pragiming language with a clean
syntax is yet to come.

112

dummy program approach is therefore very important in inglphake these decisions
as early as possible in the development cycle. Postponeggtbecisions may entalil
much additional work and destabilize the software product.

8 Step 2: Implement the Main Loop

All but the most trivial programs include some form of itéoat In a case of GUI or
Network programs it would be the so-called main message lodpe case of the Prime
Number Generator we're illustrating here, it would be a lowpr the count of primes
to be generated. At each iteration, one prime number is gegttand printed. The most
straightforward way to implement such a loop, using the Ctan&ard Library, is as
follows:

Note the use ofjenerate_n algorithm for the prime number generation loop.

In [2] E.W. Dijkstra nominates three basic mental aids regglifor the software
construction process: enumeration, mathematical indoetnd abstraction. In the con-
text of to the Prime Number Generator we will deal with thexgds in the following
order: mathematical induction, abstraction, and enurwerésee Optimization).

8.1 Mathematical Induction

Mathematical induction has traditionally been associatitlder with repetitive pro-
gramming constructs such as Cwhile, for and do-while statements. In addition to
their other benefits (see above) the C++ Standard Libranyridhgns can also help pro-
grammers to abstract out the mathematical induction. IfPtivae Number Generator,
the generate_n algorithm provides an abstraction of invoking a genericction
Gen() N-times, sending the result to a generic iterator tOUSing this approach we
introduce two new abstractions to be implemented at thelaggt:

— Generator: to generate one prime at a time
— TabOutlterator: to print one prime number at a time, whilelging all required
table-formatting rules

8.2 Abstraction

The new abstraction layer is described in the Primes.h file:

In [2] E.W. Dijkstra strongly argues that each abstractiayel should be treated
as a virtual machine, exposing a set of commands suitablsotoing the problem of
the higher abstraction layer. Three decades later Robéviattin has reinforced this
approach by stating thBependency Inversion Princip[&]. In simple wordsijt’s the
responsibility of the lower layer to implement abstractatefined at the higher level
Martin’s Dependency Inversion Principle then in effecert$ the conception that the
higher layer is condemned to resolving its problem in terfrebstractions dictated by
the lower layer.

In the case of our Prime Number Generator, Braneslayer has to supply basic
abstractions required for the main program layer for it& tasmely generating and
printing the first 500 primes

113

Each class of the Primes layer is declared in its own inclddéfiorder to facilitate
version control and to reduce the impact of future changes.@enerator.h file for this
step looks as follows:

In order to represent it as a layer the C++ namespace is usedh&nespaces pro-
vide an effective means of encapsulation, without incgreny performance overhead.
The Primes::Generator class functionality is implementiada self-operator effec-
tively turning this class into &nctor[6]. The Primes:: Generator class is parameter-
ized with the type of prime number, which makes it genericfioy underlying types of
numbers. We shall see later how this parameterization héthglebugging and testing.

The TabOutlterator.h file for this step looks as follows:

The Primes::TabOutlterator class is also parameteriztdthé prime number type
and encapsulates the table formatting functionality inftlen of aniterator [6].

Despite its perceived generic nature this class in fact dedsng to the Primes
layer, which is responsible for supplying prime number fattimg services to the upper
layer. Even if such functionality were available from a 3atty there are always some
small specifics, which justify this pure layered approacte (the final implementation
of TabOutlterator).

At the completion of this stage, we are able to compile anderprogram. It will
not format the table properly, nor will it generate prime rhers correctly (that will be
handled in the following stages). But we nonetheless hawenaluable progress.

9 Step 3: Formatting the Table

We now concentrate on properly formatting the table baseti@number of columns.
To achieve this the assignment operator has to be modifieatd@ingly. This in turn
would require introducing new TabOutlterator private memiariables that well keep
tract of column width, number of columns per line and indexhef last number being
printed. In order to initialize these variables properlg ffabOutlterator constructor
has to be modified. Finally, we have to handle a case when shéna of the table is
incomplete. That could be done in the TabOutlterator'srdesar.

The modified Primes::TabOutlterator class looks like aloved:

At this point we have a program that uses a generator to gengtimmes, and uses
an output iterator to output them. We can now compile the ianogand the output will
be formatted correctly. We now need to implement the geaerat

10 Step 4: Implementing the Generator

The Primes::Generator class does the following: for eaebtion of theself-operatoy
it returns the next prime number. The most straightforwaag wf implementing this
is to take the number following the previously found primel ao check its primality.
If it is not a prime, advance to the following number, and so Dimis would require
introducing of two new private member variables. The modifgenerator.h will look
as follows:

114

Notice how the prime number searching is implemented udiedind_if al-
gorithm from the C++ Standard Library. This implementatipecifies just enough de-
tails, deferring the rest of details to the next abstradager called PrimeCandidate. We
shouldn’t concern ourselves about performance at thistpfmousing instead on cor-
rectness and compactness of the solution. The optimizasues could be addressed
later in the development process should the need arise. &kérimeCandidate.h file
looks as follows:

Its structure is very similar to that of Primes.h and inckifikes specifying particu-
lar classes belonging to this layer. The Candidateltefafibe looks like this:

The PrimeCandidate::lterator class encapsulates a pamgidate in a form oft-
erator[6]. The initial implementation uses, as candidates, athhars of the specified
type starting from 1. Note that the PrimeCandidate::Itarelass is also parameterized
with the type of prime number. The PrimalityTester.h fileke@s follows:

By the end of this stage, we have implemented the generaiergénerator is im-
plemented in terms of the Iterator that will provide candédaand in terms of the Tester
that will evaluate those candidates for primality. Our n&tetge will be to implement
the Tester.

11 Step 5: Implementing the Tester

The most straightforward implementation of the PrimeCdat#i:: Tester would be to
divide the prime candidate by all numbers smaller than thisd@ate, checking if at
least one of them has a zero remainder. The following modifigdion of the Prime-
Candidate::Tester clasglf-operatoimplements this algorithm exactly as it sounds:

Note that, like in the case of Primes::Generator, the PriameliZiate:: Tester class is
also implemented asfanctorparameterized with the prime number type. Notice also
the role of C++ Standard library elemenfistd_if algorithm,modulus<T> func-
tor, andbind1st andnotl helpers[6], which allow straightforward implementation
of validating whether numbers are prime. The usage of theé@andidate::Iterator to
enumerate the dividers is intentional, since (unless werattee optimization phase),
the range of dividers we test against, is the same as the @fncgndidates we are
testing.

We now have a fully functional program that will generatenpgi numbers, and
format the output. We now go to the optimization phase

12 Optimization

The current solution works well for generating 500 primesoi(takes less than sec-
ond). However, it would be quite slow for generating 5000r@inumbers, and for a
larger number the performance would be unacceptable.

The good part is that the proposed solution does establisibast and flexible
structure. This structure allows substantial optimizatiprimarily through the code
specialization rather than through code complication.

No less important is the fact that the whole optimizationgeiss can be broken into
a number of steps, with each step addressing a single spasjfexct of the program.

115

According to thgust-enough improvemeptinciple of Top-Down Decomposition the
next step of optimization would be conducted only if the jjweg step has been proven
to be insufficient and there is no other way to prove it but t@suee the performance.
For the sake of prime number generator we will use a sippplgress_timer class
supplied as a part of the C++ BodsTimer library [8]. Theprogress_timer class
"automatically measures elapsed time, and then on desinutisplays an elapsed time
message”. The main program has to be modified as follows:

To improve the Prime Number Generator’s performance, wéaoodify it in one
or both of the following directions:

1. Reduce the number of candidates
2. Reduce the number of dividers

Each optimization will be implemented in one or more seastdps below.

Note 1. This exercise of optimizing the Prime Number Generator isgto empha-
size a very important fact about requirements changing. prbelem is not that re-
quirements are changing. Had we known from the very beginiivat we would have
to calculate all primes within the 32-bit, we could have terit the program without
applying any specific methodology. The problem is that nequéents are constantly
changing in unpredictable directions. The market (custspmippliers, and competi-
tors) do not really care what we did or did not do prepare fooum software. The
can and will change the requirements based on their own nekdier these circum-
stances the requirements are constantly in various ancedigpeible directions. This
could be very frustrating for developers that in that it tglly will very soon convert
what was initially elegant software code into un-mainthiedneap. What we are going
to demonstrate, is that the Top Down Decomposition apprtesats to a very resilient
code structure, from the very beginning prepared for a vadewange of changes.
This is due to the fact, that at every step we are actually ifagra "family of related
programs” [2]. By a certain degree of irony we can build tlmfly because “certain
aspects of the given problem statement are ignored at therbeg” [2].

13 Step 6: Reduce the Number of Candidates

To reduce the number of candidates, we may choose to testtootjd numbers.

Definition 2. Throdd numbers are numbers that are divisible neither bya2,by 3
[1].

The throdd number concept is easily encapsulated within the Primeicand
date::lterator class, with almost full transparency fa thst of the program. Getting
the nexthroddnumber is implemented within the increment (++) operatdodsws:

The purpose of the nestéit_vals type will be explained later. To work prop-
erly, the program must treat the numbers 2 and 3 in a specjalikare are two possible
ways to implement this special treatment:

2 The C++ Boost Library is a collection of portable C++ libesj which "work well with the
C++ Standard Library” and "are suitable for eventual stadization”.

116

1. Within the operator ++() member function
2. Outside of the PrimeCandidate::lterator class

The difference is subtle, but important. Implementing ecsgdéreatment within the
operator ++() seems to be the most straightforward and alattialso allows hiding all
implementation details from higher layer, which seems teéhgeprimary goal of Top
Down Decomposition. Sounds OK, right? Well ..., not exactly

In order to understand why it's not so straightforward wechi@econsider the third
mental aid mentioned at the beginning of this exercise: emation.

13.1 Enumeration

By enumeration we understand analyzing of individual casds handled separately.
Within the programming languages realm enumeration is émpinted using the se-
quence (semicolon ;" in C++) aniffthen-else statements. As Dijkstra stated it
in [2], enumeration works well only "under the severe bougdandition”. In other
words the number of special cases to be analyzed must be Siniglis especially true
for theif-then-else statements.

Contrary to the common approach, where these differeneegrgslemented by
means ofif-then-else constructs within inner classes, we propose raising them
to the topmost level. In many cases that would allow repativeif-then-else
statements with a sequence. This in turn allows such impitatien of the inner classes
that relays solely on pre-conditions and avoids paran@ipetitive checks of boundary
conditions. To sum, rising the constructs to the topmosllezduces complexity and
improves performance.

To a certain degree this approach was reflected in [12] whaltze3, Reed and
Clark formulated so-calle@nd-to-end argument in system desjgwstulating that:
"...functions placed at low levels of a system may be reduhdaof little value when
compared with the cost of providing them at that low levely. &@stwe have to under-
stand not only computer resources such as memory or CPUlsoute overall system
complexity.

Note 2. This may seem to be a contradiction to the arguments madesabdavor
of abstraction. It is not. The major purpose of abstractiotoicombat the complexity
that arises from enumeration. If the enumeration occursattain layer it can be dealt
with at this layer - typically though introduction of a newsataction layer underneath -
and/or may be propagated through the higher layers in codare-tune the abstraction
specifications. The very purpose of this process is to comgitlipas thin as possible
an interface between two subsequent layers in order to kaep & them as simple
as possible. In our case propagation of special treatmedto 3 to the upper layer
does not make itprogrammingsignificantly more complex, but it does simplify the
PrimeCandidate::Iterat@omputatiorsubstantially?.

To achieve that goal a special versionggnerate_n algorithm is created as
follows:

% See [2] for the difference betwe@nogrammingandcomputation

117

This is a special version @fenerate_n algorithm, and it acts as interfagéue
between the main program and the Primes layer. This spesision ofgenerate_n
algorithm is implemented using C++ function overloadingfoimes::Generator class
and for that reason the main loop did not need to change atladl.Primes.h file is
changed to include the new header file as follows:

The special values 2 and 3 treatment is implemented usin@t#eBoost Meta-
Programming Library (MPL) [9], which "is a C++ template mptagramming frame-
work of compile-time algorithms, sequences and metafonatiasses”.

Inimplementing the special version@énerate_n algorithm we assume that the
overall number of fixed values is small and thus we do not wahandle them in a run-
time loop, but rather prefer to generate a correspondindgoeniof lines of code, which
will send these fixed values to the output iterator one-bg-dt’s for that purpose the
MPL's version of thdor_each algorithm does exist. Itis similar to the C++ Standard
Library for_each , but is evaluated during the compile time. In that specifigecia
will generate invocations of theopy_one inline function that will copy exactly one
fixed value to the output iterator. To properly pass the oatitgwator and counter by
reference we use the C++ Boosbisnd [10] andref [11] template functions. The
bind template function is "a generalization of the standard fiomsstd::bind1st
andstd::bind2nd ". Theref template function allows the "passing references to
function templates (algorithms) that would usually takpies of their arguments”.

Once we've finished with the fixed values special treatmdmwiaat we need is to
invoke the C++ Standard Library versionggnerate_n . In orderto achieve a proper
type resolution to prevent recursive calls we again use theEBbost'sbind template
function.

The fixed values are organized in a compile-time list using @++ Boost
MPLs list_c container [9]. These fixed values naturally belong to thenB@andi-
date::Iterator class and are defined as a nested type (see)able Primes::Generator
class has just to export these fixed values to make them hieftar thegenerate_n
algorithm. The new version of Primes::Generator classdaskfollows:

At this point we optimized our candidate iterator so thabies not supply numbers
that are devisable by 2 or by 3.

14 Step 7: Reduce the Number of Dividers

The optimization applied in the previous step makes the @rimimber generator per-
form faster (about 75%).This suffices for generating 500@es, but is far from being

fast enough for generating say 10000 primes. In order toeaehéven better perfor-
mance we have to significantly reduce the number of dividers.

In order to establish the primality of tarodd p, we do not really need to tegt
against ALL thethrodsssmaller therp, it is sufficient that we test against a@irodds
that are smaller theyyp. If the candidatey does not have anthrodddevisors smaller
then,/p itis a prime [1].

The new version of the Test&rnctorwill look like this:

118

This simple change offers a significant improvement in roretiInstead of taking
O(n) to test the primality ofz, our program will takeO (1/n). This change was totally
confined to the Tester function.

It is important to note that at this point the generator hatreat the tester as a
statefull object, which requires the following modificatiof the Primes::Generator
class:

Note, that we ensure the statefullness of the tester thrawgimbination of the C++
Boost'shind andref templates[10, 11].

15 Step 8: Use Stored Composites

To even farther reduce the number of dividers we test agaieswill store a list of
composite numbers obtained as product of previously gésgepaime numbers [2].

Note 3. Using the composite numbers eliminates the need for exypensddulus op-
eration. See [2] for more details.

For each previously generated prime numfets first composite is stored in a form
of m = p?. To check if a candidatg is a prime, we compare it with each composite
m; created from a prime,, such thap; < v/k. If the compositen; is less thark, it
should be increased. How much it should be increased by poseseresting problem,
which we will deal with later.

According to thelLinear Search Theorefi2] we could stop the process once we've
found the first composite, which is greater therThis leads us to an interesting modi-
fication of the PrimeCandidate:: Tester class as follows:

This new implementation eliminates tfied_if linear search algorithm com-
pletely and uses theush_heap andpop_heap algorithms [6]. Now instead of tak-
ing O(y/n) to test the primality of:, our program will takeO (log /n), which is sub-
stantially faster. We store the composites intketor container supplied by the C++
Standard Library [6].

Introducing the composite number concept requires a netreatbion layer, which
fits naturally into the existing infrastructure. The Comipaé file looks as follows:

The Primes::Number::Composite class stores the curréu vd a composite and
its next increment. For each priméts corresponding increment could have bgehut
that would have generated even composites, which is wastééucould have usel- p
as our increment, but that would have generated multipl8s lafeally the composite’s
increment should change in phase with the correspondinggihiroddit was initially
created from.

Example 1. For the prime number 5 the netkiroddsare obtained using 2, 4, 2, ...as
increments in that order leading to 7, 11, 13, For thenprhumber 7 the next
throddsare obtained using 4, 2, 4, ...as increments in that ordelifigato 11, 13,
17, ...correspondingly. Accordingly from the prime numbehe composites will be
generated starting frod® = 25 using 10, 20, 10, ...as increments, while from the
prime number 7 the composites will be generated starting ffé = 49 using 28, 14,
28, ...as increments correspondingly.

119

This leads us to the conclusion that the composite’s incneriseobtained from
its corresponding prime, which justifies the introductidnaonew abstraction called
CandidateValue as follows:

The Primes::Number::Candidate class by itself is built@m ¢f a lower level ab-
straction called Increment, which is defined as follows:

Here we specify two abstractions. The first abstraction Iked&rimes:: Incre-
ment::Add and is intended for getting the next prime cangidBhe second abstraction
is called Primes::Increment::Multiply and is intended gmtting the next composite
number. The both abstractions are tightly coupled togethdrthus are defined in the
same header fil&

Note that the fixed values concept migrated to the Primesement layer. All arith-
metic calculations are performed during compile time usliregC++ Boost MPL library
[9]. In particular thempl::fold template is used for obtaining a product of fixed val-
ues in compile time. For more details see [9].

Note, that with the exception of a change in the namespaaetste there is no
need to modify the Primes::Generator class since the PrilBesdidate:: Tester class
statefullness has already been ensured in the previous step

The last optimization allows the prime generator to perf@xtremely fast and
makes it suitable for generation of a really large numberifies.

16 Step 9: Calculate All 32-bit Primes

In order to generate all primes within the 32-bit range wedneedeal with memory
rather than CPU time optimization. Keeping composite nuisifir all primes will put
a huge demand on the cache-memory size. Even if such amoomambry is available
it will eventually slow down the algorithm significantly.

The good news is that there is no need to store all compositdars, but rather
only those, which were created from primes that are less waleq the square root of
the last prime numbery .

According to [13] for eachV > 6 the N** prime numberPy can be bound as

N-mN<Py<N-(InN+InlnN) (1)

On the other hand, according to [13] for each 17

T
m(z) > — (2)
and forz > 1

() < 1.25506 - —— 3
Inz

,wherer(z) is the number of primes z. Armed with these formulas we can finally
modify our program to accomplish the task of generating athps within the 32-bit
range. The number of changes will be negligibly small coragavith the challenge.

* In this implementation we assume that bit test,bit shift hinéhversion operations are cheaper
than a generiaddoperation, which is usually true for typical binary proaasssuch as Intel’s
Pentium.

120

First of all for debugging and development speed processomgotl want to deal
with 32-bit range until the very last stage when we are confidéth the program cor-
rectness. A more generalized problem statement would siikentenerate all prime
numbers for the given type T". Since all layers are alreadypletized with the prime
data type, all that is required is to modify thain function such that it will obtain the
actual type as a macro from compiler command line and tounsggned short
for debugging purposes.

We also need to modify thmain function to correctly calculate the column width.
The new version will look as follows:

As we can see the actual work of the column width calculatiodelegated to the
Primes::TabOutlterator class, which has to be modified ibmAfs:

This in turn requires an introduction of a neMthPrime template function as
follows:

The customized version of tlgenerate_n algorithm has to be modified as fol-
lows:

The new version of thgenerate_n algorithm now operates in three phases:

1. Output the fixed values.
2. Generate enough primes to populate the cache of composite
3. Generate the remainder of the primes, using the cache.

In order to estimate the number of composites to be storedvaGearheSize
function is introduced as follows:

The Primes::Generator class is modified and now providesésgions of theself-
operator. one, which will store composites in the cache, and one, vividl just use it,
but will handle properly the candidate overflow race cowditiThe new version of the
Generator.h file looks as follows:

In this version of Primes::Generator the handling of overftace condition relies
on the fact that the first after overflow (end) value of primedidate is equal to its first
value, namely 1. To prove this assumption we have to prowdghany N > 0: 4" —1
is not athrodd, and4” — 3 is athrodd®.

Proof. To prove the first statement we have to prove that for Any 0: 4V — 1 is
divisible by either 2 or 3. It's obviously not divisible by But it is divisible by 3, which
can be proven by induction as follows:

1l.forN=1:4—-1=3
2. forN > 1:4V —1=3.4(N-1 4 (4(N=1) _ 1)

To prove the second statement we have to prove that fonany0: 4V — 3 is not
divisible by neither 2, nor 3, which is obvious. a

Note 4. This limited arithmetic exercise demonstrates a very comitnade-off be-
tween the three types of effort we must always deal with led&ual, programming
and computational. In this particular case, had we not balingvto pay the price of
the intellectual effort needed to prove that a prime cartdid@nd value is equal to its

5 And thus adding 4 to this number will lead to 1

121

first value we would have either been forced to litter the owitle the explicit computa-
tion of the end value or to pay additional CPU cycles on chegkithe next candidate
value is less than the previous value. Being aware aboutrdiie t- off is extremely
important for making the software development work effexti

The last modification, which is required, is to make publie 8tore method of
the Primes::Candidate::Tester class in order to allow timmd3::Generator to access it.

17 Summary

The primary goal of Top-Down Decomposition is controllimepaplexity. Others goals,
such as efficiency and reuse, are of secondary importancararidlly subordinated to
the primary goal. To achieve the required control over caxip}, we employ abstrac-
tion. We have shown how, using the C++ Standard Library dlyms we can effectively
abstract the most of the typical iterative processes. Whemerating or doing special
case analysis, pushing the functions to the topmost pedeiél, yields more efficient
and robust code.

It takes a Pentium-11l computer about 2.5 hours to generdfgrianes within the
32-bit range. The largest 32-bit range prime number is 489291. Having all layers
parameterized with the prime number type allows significadtiction of the debugging
time, through temporal usage of thasigned short type.

122

Bibliography

[1] Dijkstra, E.W.: "Stepwise program construction”, htfp/ww.cs.utexas.edu/ user-
s/ewd/ewd02xx/ewd227.pdf, February 1968
[2] Dijkstra, E.W.: "Notes on Structured Programming”, fnffwww.cs.utexas.edu/
users/ewd/ewd02xx/ewd249.pdf, April 1970
[3] Buschman, F., et al: "Pattern-Oriented Software Aretiitire”, John Wiley &
Sons, 1996
[4] Czarnecki K., Eisenecker U.W.: "Generative ProgramgnilMethods, Tools and
Applications”, Addison-Wesley, 2000
[5] Coplien, J.: "Multi-Paradigm Design for C++", Addisdivesley, 1999
[6] Dinkum C++ Library Reference, http://www.dinkumwazem/manuals
[7] Martin, Robert C.: "Agile Software Development, Priptas, Patterns, and Prac-
tices”, Prentice Hall, 2002
[8] C++ Boost Timer Library: http:://www.boost.org/liigher/timer.htm
[9] C++ Boost MPL Library: http:://www.boost.org/libs/ridoc/index.htm
[10] C++ Boost Bind Library: http:://www.boost.org/lidshd/bind.html
[11] C++ Boost Ref Library: http:://www.boost.org/doaffifref.html
[12] Saltzer, J.H., Reed, D.P., Clark, D.D.: "End-to-engments in System Design”,
ACM Transactions on Computer Systems 2, 4, November 1984
[13] Menezes, A.J., Van Oorschot, P.C., Vanstone A.A.: "thaook of Applied Cryp-
tography”, CRC Press, 1996

123

124

SOUL and Smalltalk - Just Married

Evolution of the Interaction Between a Logic and an
Object-Oriented Language Towards Symbiosis

Kris Gybels

Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Elsene, Belgium
kris.gybels@vub.ac.be

1 Introduction

The Smalltalk Open Unification Language a Prolog-like language embedded in the
object-oriented language Smalltalk [5]. Over the yearbai been used as a research
platform for applying logic programming to a variety of pteims in object-oriented
software engineering, some examples are: representingiddmowledge explicitly
[3]; reasoning about object-oriented design [15, 14]; &imegand enforcing program-
ming patterns [11]; ; checking architectural conformaridg fnd making the crosscuts
in Aspect-Oriented Programming more robust [6]. These gtesfit in the wider re-
search oDeclarative Meta Programmingvhere SOUL is used as a meta language to
reason about Smalltattode

Recently, we explored a different usage of SOUL in conngdbunsiness rules and
core application functionality [2], which involves reasog about Smalltalkobjects
We found we had to improve on SOUL's existing mechanism faaracting with those
objects because it was not transparent: it was clear frons@eL code when rules
were invoked and when messages were sent to objects, visa-s@ving queries from
methods was rather clumsy. Ideally we would like to achieviaguistic symbiosis
between the two languages: the possibility for programsiiqgocograms written in an-
other language as if they were written in the same [8, 13]hSutcansparent interaction
would make it easy to selectively change the paradigm p&gs application are writ-
ten in: if we find that a Smalltalk method is better written degic rule we should be
able to replace it as such without having to change all messagoking that method.

We will here take a historical approach to describing the &@thalltalk symbio-
sis. We would like to provide an insight into our motivatiam find approach to achieve
the symbiosis by contrasting three distinct stages in idution. In a first stage, SOUL
was developed as a direct Prolog-derivate with some additimechanisms for ma-
nipulating Smalltalk objects as Prolog values. In a secomtthird stage we explored
alternative mechanisms and a more Smalltalk-fitting syfmaxSOUL. Interestingly,
when we performed a survey of other combinations of objeetrted and logic pro-
gramming we found we could easily categorize their appreadtto one of our three

* Research assistant of the Fund for Scientific Research dé&flargBelgium) (F.W.O.)

125

"stages”. The following sections discuss the stages inildeta the "Related Work”
section at the end briefly discusses the survey.

2 Stage 1: Escaping from SOUL

The interaction mechanism found in the original SOUL can besharacterized as an
escape mechanism. But before we go into this, let us make gemeral points about
this version of SOUL:

Implementation: SOUL is embedded in Smalltalk, meaning it is entirely imple-
mented in it.

Syntax: We assume readers are familiar with Prolog, the differemdds this lan-
guage and SOUL in this stage are:

Variable notation: in Prolog, variables are written as names starting with a cap
ital letter, in SOUL they are written as hames preceded wigjuestion mark,
thusSomething translates t¢something

List notation: in Prolog, square bracketp {) are used to write lists, these are
replaced with angular brackets in SOUL ¢&).

Rule notation: the 'if’ operator:- linking conclusion to conditions is replaced
with theif operator in SOUL.

The combination of Smalltalk’s Meta-Object Protocol andl&@ embedding in
Smalltalk lead to the insight that the simplest way to let $Qddograms reason about
Smalltalk code is to give them access to the meta-objeasttijr For this reason there
are additional differences with Prolog:

Values: any Smalltalk object (not just the meta-objects) can be Hama value to a
logic variable.

Syntax: the Smalltalk term, a snippet of Smalltalk code enclosedjirase brackets
[T - The Smalltalk code can contain logic variables wherevealfatk variables
are allowed.

Semantics: when Smalltalk terms are encountered as conditions in rtiey are
"proven” by executing the Smalltalk code. The return valbhewd be a boolean,
which is interpreted as success or failure of the "proof”.aBtalk terms can also
be used as arguments to conditions, then they are evaluadegti@resulting value
is used as the value of the argument. Unification deals withlatk objects as
follows: two references to an object unify only if they referthe same object.

Primitive predicates: a primitive predicatgenerate can be used to generate ele-
ments of a Smalltalk collection as successive solutiona faariable.

The example set of rules in figure 1 are taken from SOUL's fipfar Declarative
Meta Programming and show how Smalltalk terms are used. Adigateclass is
defined which reifies class meta-objects into SOUL; two dfifi rules are defined for
it to deal efficiently with different argument binding patis. Thesubclass predicate
expresses that two classes are related by a direct sulngas$ationship when one is

126

class(?x) if

var(?x),

generate(?x, [System allClasses])
class(?x) if

nonvar(?x),

[?x isClass]

subclass(?super, ?sub) if
class(?sub),
equals(?super, [?sub superclass])

hierarchy(?root, ?child) if
subclass(?root, ?child)

hierarchy(?root, ?child) if
subclass(?root, ?direct),
hierarchy(?direct, ?child)

Fig. 1. Example rules defining predicates for reasoning about $atafirograms.

argumentArray := Array with: (Array with: #x with: someClas s).
evaluator := SOULEvaluator eval: 'if hierarchy(?x, ?y)’
withArgs: argumentArray.
results := evaluator allResults.
ysolutions := results bindingsForVariableNamed: #y.

Fig. 2. Code illustrating how the SOUL evaluator is called from Sta#k and how the results are
retrieved.

the answer to theubclass message sent to the other. Thierarchy predicate
extends this to indirect subclassing relationships.

The example rules are indicative for the way SOUL interadte ®malltalk in this
stage: the use of Smalltalk terms is limited to a small ctibecof predicates such
asclass andsubclass , which are organized in the so-called "basic layer”. Other,
more high-level predicates suchlasrarchy make use of the predicates in the basic
layer to interact with Smalltalk objects. This organizativoids pollution of the higher-
layer predicates with explicit escape coda a way, the basic layer provides a gateway
between the two languages by translating messages to atesl@nd vice-versa.

The other direction of interaction, from Smalltalk to SOU&,done through ex-
plicit calling of the SOUL evaluator with the query to be axatled passed as a string.
Figure 2 illustrates how théierarchy predicate is to be called. On the second
line, an evaluator object is created by sending the messagkwithArgs: to
the SOULEvaluator class, the message is passed the query to evaluate and vari-
able bindings as arguments. The variable bindings are gassan array of variable-

! Another reason why this is done is to make the higher-layedipates less dependent on
Smalltalk, so that they may later be used when reasoningt atogie in other OO languages

[4].

127

object pairs. In the example, the logic varialBke will be bound to the value of the
Smalltalk variablesomeclass , so the query will search for all child classes of that
class. These child classes will then be bound as solutiotisetwvariable?y. These
solutions can be retrieved by sendingaiiResults message to the evaluator ob-
ject, which returns a result object. The result object theads to be sent the mes-
sagebindingsForVariableNamed to actually retrieve the bindings, which are
returned as a collection.

3 Stage 2: Predicates as Messages

A second stage of SOUL-Smalltalk interaction, which we réga on at a previous
multi-paradigm programming workshop [1], aimed at pronglimore of a transparent
interaction. Our motivation then was especially to improwethe way Smalltalk pro-
grams can invoke queries, and do it in a way that would proingiistic symbiosisTo
do so, we tried to map invocation of predicates more dirgctihe concept of sending
a message.

The term linguistic symbiosis refers to the ability for prams to call programs
written in another language as if they were written in the esahtaving this ability
would also imply that transparent replacement is possiklglacing a "procedure” (=
procedure/function/method/...) in the one language witlpracedure” in the other,
without having to change the other parts of the program theltenuse of that "pro-
cedure”. In fact, the term was coined in the work of Ichisugak on an interpreter
written in C++ which could have all of its parts replaced witrts written in the lan-
guage it interprets. Such usage of linguistic symbiosigtwipe reflection was further
explored in the work of Steyaert [13].

While these earlier works provided us with solutions, we &lad an added problem:
the earlier works dealt with combining two languages fouhde the object-oriented
paradigm, while we aimed at combining an object-orientatl@fogic language. The
earlier works dealt with mapping a message in the one larggtm@ message in the
other, while we needed to map messages to queries.

To provide a mapping of messages and queries, we had fivesissuesolve:

Unbound variables: how does one specify in such a message that some arguments
are to be left unbound? The concept of 'unbound variabldsrsign to Smalltalk.

Predicate name: how is the name of the predicate to invoke derived from theenaim
the message?

Returning multiple variables: how will the solutions be returned when there are
multiple variables in the query?

Returning multiple bindings: if there are multiple solutions for a variable, how will
these be returned?

Receiver: which object will the message be sentto?

We combined the solution for the first two issues by assuntiaggredicate names,
like Smalltalk messages, would be composed of keywordsfameach argument. To
specify which variables to leave unbound we adopted a scliem@mmbining these
keywords into a message name from which that specificatiobealerived. To invoke a

128

[Message |Query

Main add: 1 with: 2 to: 3 if Main.add:with:to:(1,2,3)
Main add: 1 with: 2 if Main.add:with:to:(1,2,?res)
Main add: 1 if Main.add:with:to:(1,?y,?res)
Main add if Main.add:with:to:(?x,?y,?res)
Main addwith: 2 if Main.add:with:to:(?x,2,?res)
Main addwithto: 3 if Main.add:with:to:(?x,?y,3)
Main addwith: 2 to: 3 if Main.add:with:to:(?x,2,3)
Main add: 1 withto: 3 if Main.add:with:to(1,?y,3)

Table 1. Mapping a predicate to messages

predicate from Smalltalk one would write the message asidinee of the first keyword,

optionally followed by a colon if the first argument is to beund and a Smalltalk

expression for the argument’s value, then the second keljwoncatenated to the first
if that one was not followed by a colon, and again itself fakal by a colon if needed

for an argument and so on for the other keywords until no mesevikrds need to

follow which take an argument. This is best illustrated vathexample. Table 1 shows
the 23 ways of invoking a predicate callentid:with:to: and the equivalent query
in SOUL.

For the issue of needing a receiver object for the messageapped layers to
objects stored in global variables. Because in Smalltalksgs are also objects stored
in global variables, this has the effect of making a pre@igéatoking message seem
like a message to a class. The basic layer is for exampledsioEasic .

We proposed two alternative solutions to the issues of m@igrbindings. The first
was simply to return as result of the message a collectioroléctions: a collection
containing for each variable a collection of all the bindirigr that variable. The alter-
native consisted of returning a collection of message fodimg objects, one for each
variable. Sending a message to such a forwarding objectdvoake it send the same
message to all the objects bound to the variable. The ideaavaovide an implicit
mechanism for iterating over all the solutions of a variatsay much how like SOUL
can backtrack to loop over all the solutions for a conditiims however lead to matters
such as whether forwarding objects should also start baaikitrg over solutions etc.,
so it was discarded as a viable solution. We coined the paradigm leakio refer to
this problem of concepts "leaking” from one paradigm to ttieeo

We also used the predicate and message mapping to repladésSgldier use of
Smalltalk terms. Instead of using square brackets to esmafenalltalk for sending
a message, the same message can now be written more i@iin invocation of
a predicate in an object "pretending to be a SOUL module” elHtre reverse of the
above translation happens: SOUL will transform the pradita a Smalltalk message
by associating the arguments of the predicate to the keysiarids name. The predi-
cate’s last argument will be unified with the result of theuattmessage send. Take the
following example:

if Array.with:with:with:(10,20,30, ?instance),
?instance.at:(2,?value)

129

member(?x, <?x | ?rest>).
member(?x, <?y | ?rest>) if
member(?x, ?rest).

<?x | ?rest> contains: ?x.
<?y | ?rest> contains: ?x if
?rest contains: ?X.

Fig. 3. Comparison of list-containment predicate in classic avd 8®UL syntax.

The first condition in the example query will actually be exakd by sending the
messagevith: 10 with: 20 with: 30 to the clasdrray . The result of that
message is a nefrray instance, which will be bound to the varialilsstance
In the second condition, the messade 2 will be sent to the instance and the result,
20 in this case, will be bound to the varialstealue .

While in this second-stage SOUL mixing methods and rulesiisedy transparent
from a technical standpoint, it is obvious which code isrnidted to invoke what to a
human interpreter. Technically there is no more need in S@Jlan escape mecha-
nism, and the same language construct is used to invokeantemessages. Similarly
in Smalltalk, queries no longer have to be put into stringletéhem escape to SOUL
and can just be written as message sends. However, a Sknalttgrammer would
frown when seeing messages sucladdwith: 2 to: 3 . Furthermore, he would
probably guess that the result of that message would be the Bainstead it will be a
collection with a collection containing the value 5. The weyd-concatenated predicate
names in SOUL also lead to awkward looking programs in thaguage.

4 Stage 3: Linguistic Symbiosis?

The next, and currently last, stage in the SOUL-SmalltafkIsipsis uses a new syntax
for SOUL to avoid the clumsy name mappings from the previdages For this stage

we also had a specific application for the symbiosis in mingjriess rules [2], which

influenced its development in certain respects. One diffexds that previously we

wanted to allow Smalltalk programs to call the existingdityrof SOUL code-reasoning
predicates, while for supporting business applicatioesidea is rather to use SOUL
to write new rules implementing so-called business rulethefapplication. This also

implies another shift: reasoning about (business) objatt®r than meta objects.

In the new syntax predicates look like message sends. Ldtiggate with an ex-
ample, figure 3 contrasts the classiember predicate with its newontains: coun-
terpart.

The second rule focontains: can be read declaratively simply in Prolog-style
as "for all ?x, ?y and?rest thecontains: predicate ovexk?y | ?rest> and
?x holds if". A declarative message-like interpretateamuld read "for all?x, the
answer to the messagentains: ?x of objects matching?y | ?rest> istrue
if the answer of the objecrest to contains: ?x is true.” Both interpretations
are equivalent, though the second one is really the basikdéarew symbiosis.

130

?product discountFor: ?customer = 10 if
?customer loyaltyRating = ?rating &
?rating isHighRating

Fig. 4. Example of a rule using the equality operator.

Because messages can return values other than boolearkjedemother syntactic
element to SOUL to translate this concept to logic prograngmi he equality sign is
used to explicitly state that "the answer to the message®tethhand side of is the
value on the right hand side”. Figure 4 shows an example.

The new syntax has a two-fold impact on how the switching betwSmalltalk
and SOUL occurs. It is no longer necessary to employ a coatglicscheme with
concatenation of keywords to get the name of a predicateth®nds that there is no
more mapping of objects to SOUL modules and vice-versa, egdvere dropped from
SOUL as the concept of having a "receiver” for a predicate comes as part of the
message syntax.

A Smalltalk program no longer has to send a message to a SOUdulmtpretend-
ing to be an object” to invoke a query. Instead, a switch betwtbe two languages now
occurs as an effect of method and rule lookup: we changedltikado that when a
message is sent to an object and that object has no methddtfoe message is trans-
lated to a query. In SOUL, when a rule is not found for the pratdi of a condition, the
condition is translated to a message. This new scheme ntakesh easier and much
more transparent to actually interchange methods and rules

The translation of queries and messages is straightforaaddwe’ll simply il-
lustrate with another example. Figure 5 shows a price caticui method on a class
Purchase which loops through all products a customer bought and synikeir to-
tal price minus a certain discount. When fttiscountFor: customer message
is sent to the products, Smalltalk will find no method for thassage, so it will be
translated to the query:

if ?argl discountFor: ?arg2 = ?result

Where?argl and?arg2 are already bound to the objects that were passed as ar-
guments to the message. When the query is finished, the abjetsult is returned
as result of the "message”. This returning of results isaltt@a bit more involved, we’'ll
discuss it further in the next section.

For the inverse interaction, we can take bgaltyRating = condition in the
discountFor: rule (fig. 4) as an example. For a small business the loyatigga
of a customer can simply be stored as a property of the custobject which can be
accessed through theyaltyRating message. In that case, SOUL will find no rule
for the "predicate’loyaltyRating and will translate the condition simply to the
messagédoyaltyRating which is then sent to the customer object in the variable
?customer . After it returns, the result of the message is unified with tariable
?rating . Of course, for a bigger business we might want to replacedheulation
of loyaltyRating with a set of more involved business rules which we’d preder t

131

Purchase instanceVariables: 'shoppingBasket customer’
Purchase>>totalPrice
| totalPrice discountFactor |

totalPrice := 0.
shoppingBasketContents do: [:aProduct |
discountedFactor :=
(100 - (aProduct discountFor: customer)) / 100.
totalPrice :=
totalPrice + (discountFactor * aProduct price).

Fig. 5. Example price calculation method on Purchase class

implement with logic programming, for example "a high ratiis given to a customer
when she has already spent a lot in the past few months”. Wattransparent symbiosis
such a replacementis easy to do.

5 Limits and Issues

At the end of the "Stage 2" section, we remarked that our gwiithen was only tech-
nically transparent, it was rather obvious to a programniéckvcode was intended to
invoke which paradigm. In the previous section we demoterénat this is now much
less the case, itis fairly easy now to interchange methodswdas without this becom-
ing obvious. There are however limits to this interchangangl there are still subtle
hints that may reveal what paradigm is invoked. These limitd issues stem from
differences in programming style between the object-dei@¢iand logic paradigms.

One important style difference between the paradigms ismdne multiplicity is
dealt with. In logic programming, there is no differencevbetn using a predicate that
has only one solution and one that has multiple solutionsbjact-oriented program-
ming there is an explicit difference between having a messatyirn a single object or
a collection of objects (even, or especially, if there’syomhe object in that collection).
This difference leads to an issue in how results are retuino@d queries to Smalltalk,
and one in how predicates and messages are named.

When a Smalltalk message invokes a SOUL query and the quarpihig one
solution, should the solution object be simply returned layudd a singleton collec-
tion with that object be returned? The invoking method mageex a collection of
objects, which would then just happen to contain just a sirigim, or it may gen-
erally be expecting there to be only one result. It is diffidor SOUL however to
know which is the case. To deal with this we made SOUL retunglsisolutions in a
FakeSingleltemCaollection wrapper. The=akeSingleltemCollection
class implements most of the messages expected of coliedticGmalltalk, any other

132

?child ancestor = ?parent if
?child parent = ?parent.

?person ancestor = ?ancestor if
?person parent = ?parent,
?parent ancestor = ?ancestor

Fig. 6. Rules expressing the ancestor relationship between Person

Person instanceVariables: 'name parent’

Person>>parent
" parent

Person>>name

name
Person>>printOn: stream

name , ' descendant of ' printOn: stream.
self ancestor do: [:ancestor |

ancestor name , ' and ' printOn: stream

]

Fig. 7. Instance variables and some methods of the Person class

messages are forwarded to the object that is being wrappedeTs thus an "automatic
adaptation” to the expectations of the invoking method.

Plurality, or lack thereof, in the names of predicates andsages can cause some
programming style difficulties. Figures 6 and 7 illustrdte modeling of persons and
their ancestral relations through a class and some logésrivoking these rules from
theprintOn: method is however awkward: it is quite natural for a logicgraommer
to write the relationship as "ancestor” even though therié vé multiple ancestors
for each Person, the object-oriented programmer would hemerefer to write the
plural "ancestors” to indicate that a collection of resigdtexpected. One solution to this
problemis toimplementarule fancestors which simply maps tancestor |, this
would however defeat the purpose of having an automatic mgpd messages and
queries. A potential solution could be to take this styldedlédnce into account when
doing the mapping by adding or removing the sufixvhen needed.

When comparing the stage 2 and stage 3 symbiosis, stage 3eayrsore limited
in the variables that can be left unbound when invoking gasdriom Smalltalk. In stage
2 the mapping of predicate names to message names imphtstyindicated which
variables to leave unbound, while in stage 3 the mapping &sages to queries only
leaves unbound the result variable, the one on the right batedof the equality sign
in the query. Actually, we did implement a means for leavitigeo variables unbound

133

as well. We changed the way Smalltalk deals with temporamaktes to allow for the
following code to be written:

| products customers discounts |

discounts := products discountFor: customers

Normally the Smalltalk development environment would wtrat this code uses
temporary variables before they are assigned. Now howtheemessagproducts
discountFor: customers will result in the query:

if ?argl discountFor: ?arg2 = ?result

Where all of?argl , ?arg2 and?result are left unbound. When the query
is finished, the result of the message will be as describdteand additionally the
temporary variableproducts andcustomers will also be assigned the solutions
of the variable®argl and?arg2 .

This leaving unbound of temporary variables is howeverlagaexample of a para-
digm leak, it is quite unnatural code for a Smalltalk prognaento write. We consider it
as something that should be used with care and preferabigexd/Nhile in stage 2 the
equivalent mechanism seemed most necessary because thatimotvas to allow ac-
cess to alexistingSOUL predicates, our focus shift to implementimevbusiness rules
makes it less necessary: its better to design the rulegetiffly. Nevertheless many of
the rules will be designed to be used from other rules, nottoeplaced with meth-
ods and callable in a multi-way fashion. On occasion, theksmay need to be used
directly from a method, so we kept the unbound temporarieshar@sm in place.

There is also a limitation in leaving arguments unbound theroway around: when
translating a condition to a message, all of its argumergseapected to be bound.
SOUL will currently generate an error otherwise. It would fessible though to at
least deal with the "receiver” argument of the condition imare logic-like way: when
it is unbound, SOUL could send the message to some randomtdljen memory
which support a method for the message. If the messagel irtwe, the object is a
solution for the "receiver” variable. On backtracking ditbe other objects supporting
the message would be tried. A problem here would be the awibawvocation of
object-mutating messages due to polymorphism: when pdisenguery?game draw
we may simply be interested in all chess games that ended iave tut may wind
up also drawing all graphical objects on the screen. In ma¢hough this may not
be so much of a problem as normally the messages invoked fdi Svould have a
keyword "is” or "has” in their name because they are writtetireocation of predicates,
and it is a convention normally applied by Smalltalk prognaens as well.

6 Related work
We examined several existing systems which were designedubd be used for busi-

ness rule development and in which object-oriented and Ipgggramming are com-
bined [2]. The interaction mechanisms we encountered fitni@ of three categories

134

similar to the three stages we discussed here: use of aneesuaghanism, some ex-
plicit mapping of predicates and methods or a syntactic anthsitic integration of the
two languages. We limit our discussion here mostly to a festesys that aim for the
third category as well.

NéOpus also extends Smalltalk with logic programmingutifowith production-
rule based logic rather than proof-based logic [12]. Rut@ssist of conditions and ac-
tions, rather than conclusions, which are respectivelyesged as boolean messages to
objects and state-changing messages to objects. The ¢afiegjgsonclusion” as some-
thing separate from a direct effect on the state of objedtuis dropped. Rules are also
not invoked through queries, but rather are triggered byigha in the state of objects
and there is no backtracking to generate multiple solutibhs means that some of the
issues we had to deal with do not occur in NéOpus: the prabtEfimapping predicates
and methods, returning of multiple results etc. Pachetdndayues against adding back-
ward chained inferencing to NéOpus because he finds the@stradiction between
the desire to use the OO language to express rules in andladlckward chaining [12],
which may come down to our issues. Note that we made the midgikge resemble the
object-oriented one as closely as possible and neededtofalt symbiosis, we did not
simply use the OO language directly to express rules. Bssidmt form of chaining
to use, Pachet also discusses other questions which we haddive as well. Most
importantly what happens to pattern matching and objecgsidation. Often in logic
programming a data structure is accessed directly throndication of its constituent
parts. In some of the other systems we examined, like CommiesR7] , this is still
done this way by mapping objects to predicates with an arguifioe each instance
variable. In SOUL, as in NéOpus, we chose to uphold objecapsulation and only
allow accessing objects through message sending.

LaLonde and Van Gulik used Smalltalk’s reflection to turninady methods into
backtracking methods [10]. They built a small framewfdiksupport the backtracking
methods. Most important in there is a message which makeslitag method return
with a certain value but remembers the calling point, thehmeican then be made to
resume execution from that point on. This is achieved byatipg Smalltalk’s ability
to access the execution stack from any method. The backtgtdkes care of undoing
changes to local variables, though not to instance vasaid globals . Local variables
are thus used to simulate logic variables, but they are magigather than unified and
there is no simulation like our unbound temporaries forieglimethods with some
arguments left unbound, so backtracking methods are nsifalilation of logic rules.
Despite the similarities in the use of Smalltalk expressj@nogramming in this system
seems quite different from programming in symbiotic SOUL.

Kiev [9] extends Java with logic rules, which can be addeddly to classes and
called through message sending. To call a rule with unbougdnaents, one passes
an empty wrapper object as argument which will then be bounthbé rule. A new
for-construct can be used to iterate over all solutionsr&l® no equivalent for our
equality operator construct, calling a rule from a method asessage always returns
a boolean to indicate success or failure. This is a subtlénportant difference with

2 Small enough to have the full code listed in their paper.

135

symbiotic SOUL: returning objects from rules requires tise of sending a message
with unbound arguments, making calling rules not as tramsya

7 Summary and Conclusions

We presented the history of a combination of Smalltalk witlhgic language. Three
distinct stages appeared in its evolution of the interactietween the two languages
which we also encountered in studying other combinatiorubgct-oriented and logic
programming: a stage where the languages could bind eaehtalues to variables
and manipulate these values by "escaping” to the other gega stage where the es-
cape mechanism was made more transparent by an automapamgappredicates and
methods and the current final stage in which the syntax ofabie language has been
adapted to that of the host language to allow not only forneai but programming
style transparency as well. The aim was to achieve a linguggmbiosis so that meth-
ods and rules can be easily and transparently interchampeds not just of theoretical
interest but has an application in the development of bssingle applications: an ex-
isting application without business rule separation magdrte be turned into one that
does, or new developments in the policies of the businessmadg it more interesting
to turn methods into rules.

We compared our earlier and current solution for such isagdsw to map mes-
sages and queries, return multiple results from a query tallgik etc. There are un-
fortunately still some minor issues to resolve such as hode@l properly with the
difference in use of plurality in names between the two pgrad and avoiding the
invocation of state-changing messages. Neverthelesswesfthand the current version
of symbiotic SOUL to be a great improvement over previousiosrs.

136

Bibliography

[1] Johan Brichau, Kris Gybels, and Roel Wuyts. Towards guistic symbiosis of
an object-oriented and logic programming language. Ig $oriegnitz, Kei Davis,
and Yannis Smaragdakis, editoPspceedings of the Workshop on Multiparadigm
Programming with Object-Oriented Languag202.

[2] Maja D’'Hondt and Kris Gybels. Linguistic symbiosis fdre automatic connec-
tion of business rules and object-oriented applicatiorctiomality. (to appear),
2003.

[3] Maja D’Hondt, Wolfgang De Meuter, and Roel Wuyts. Usirgflective logic
programming to describe domain knowledge as an aspeEirdnSymposium on
Generative and Component-Based Software Enginegtidgp.

[4] Johan Fabry and Tom Mens. Language-independent deteatiobject-oriented
design patterns. IRroceedings of the European Smalltalk User Group’s confer-
ence 2003. (Conditionally accepted).

[5] Adele Goldberg and Dave Robso@malltalk-80: the languageAddison-Wesley,
1983.

[6] Kris Gybels and Johan Brichau. Arranging language fesgtifor more robust
pattern-based crosscuts. Pnoceedings of the Second International Conference
of Aspect-Oriented Software Developme03.

[7] IBM. Business rules for electronic commerce: ProjectBi¥l T.J. Watson re-
search, 1999. http://www.research.ibm.com/rules/.

[8] Yuuji Ichisugi, Satoshi Matsuoka, and Akinori YonezaweRbcl: a reflective
object-oriented concurrent language without a runtimendéder In IMSA'92 In-
ternational Workshop on Reflection and Meta-Level Archites 1992.

[9] Maxim Kizub. Kiev language specification July 1998.
http://www.forestro.com/kiev/kiev.html.

[10] Wilf R. LaLonde and Mark Van Gulik. Building a backtracly facility for
Smalltalk without kernel support. IRroceedings of the conference on Object-
Oriented Languages, Systems and Applicati&@M Press, 1988.

[11] Kim Mens, Isabel Michiels, and Roel Wuyts. Supportimdt@are development
through declaratively codified programming patternsPtaceedings of the 13th
SEKE Conference001.

[12] Francois Pachet. On the embeddability of productidesin object-oriented sys-
tems.Journal of Object-Oriented Programming(4), 1995.

[13] Patrick SteyaertOpen Design of Object-Oriented Languag&hD thesis, Vrije
Universiteit Brussel, 1994.

[14] Roel Wuyts. Declarative reasoning about the struabfigbject-oriented systems.
In Proceedings of TOOLS-USA 199%98.

[15] Roel Wuyts.A Logic Meta Programming Approach to Support the Co-Evotuti
of Object-Oriented Design and ImplementatioRhD thesis, Vrije Universiteit
Brussel, 2001.

[16] Roel Wuyts and Kim Mens. Declaratively codifying soéwe architectures using
virtual software classifications. Broceedings of TOOLS-Europe 199999.

137

138

Unifying Tables, Objects and Documents

Erik Meijer', Wolfram Schulté, and Gavin Biermah

1 Microsoft Corporation, USAemeijer@microsoft.com
2 Microsoft Research, USAschulte@microsoft.com
3 Microsoft Research, UKgmb@microsoft.com

Abstract. This paper proposes a number of type system and language exte
sions to natively support relational and hierarchical ddthin a statically typed
object-oriented setting. In our approach SQL tables and Xituments become
first class citizens that benefit from the full range of feasuavailable in a modern
programming language like*®r Java. This allows objects, tables and documents
to be constructed, loaded, passed, transformed, updateédyeried in a unified
and type-safe manner.

1 Introduction

The most important current open problem in programminguagg research is to in-
crease programmer productivity, that is to make it easier faster to write correct
programs [29]. The integration of data access in mainstfgagramming languages is
of particular importance—millions of programmers strigglith this every day. Data
sources and sinks are typically XML documents and SQL tdmléshey are currently
rather poorly supported in common object-oriented langsag
This paper addresses how to integrate tables and docunmmtsnodern object-

oriented languages by providing a novel type system anasponding language ex-
tensions.

1.1 The need for a unification

Distributed web-based applications are typically streedwsing a three-tier model that
consists of amiddle tierthat contains the business logic that extracts relatioatd d
from adata services tieand processes it into hierarchical data that is displayelén
user interface tie(alternatively, in a B2B scenario, this hierarchical daighmsimply
be transferred to another application). The middle tieyjsdally programmed in an
object-oriented language such as Java'or C

As a consequence, middle tier programs have to deal withioe data (SQL
tables), object graphs, and hierarchical data (HTML, XMUpfortunately these three
different worlds are not very well integrated. As the foliogg ADO.Net based example
shows, access to a database usually involves sending @ stpresentation of a SQL
query over an explicit connection via a stateful APl and therating over a weakly
typed representation of the result set:

139

SqlConnection Conn = new SglConnection(...);
SqglCommand Cmd = new SglCommand
("SELECT Name, HP FROM Pokedex", Conn);
Conn.Open();

SglDataReader Rdr = Cmd.ExecuteReader();

HTML or XML documents are then created by emitting documeagients in
string form, without separating the model and presentation

while (Rdr.Read()) {
Response.Write("<tr><td>");
Response.Write(Rdr.GetInt32(0));
Response.Write("'</td><td>");
Response.Write(Rdr.GetString(1));
Response.Write("'</td></tr>");

}

Communication between the different tiers using untypedgs is obviously very
fragile with lots of opportunities for silly errors and nogsibility for static checking.
In fact, representing queries as strings can be a secwskytfie so-called ‘script code
injection’ problem). Finally, due to the poor integratigggrformance suffers badly as
well.

1.2 Previous attempts

It is not an easy task to gracefully unify the worlds of obgectocuments and tables,
so it should not come as a surprise that no main-stream progiag language has yet
emerged that realizes this vision.

Often language integration only deals with S@Lwith XML but not with both [4,
14,6, 9, 18]. Alternatively they start from a completely rlewguage such as XQuery or
XDuce [3, 12], which is a luxury that we cannot afford. Appecbas based on language
binding using some kind of pre-compiler such as XSD.exetd@aer JAXB do not
achieve a real semantic integration. The impedance misnadtveen the different
type systems then leads to strange anomalies or unnatupglings. Another popular
route to integrate XML and SQL is by means of domain specifibesded languages
[13] typically using a functional language such as Schemidaskell [26, 27, 22, 23,
19, 15, 10, 32, 33, 4] as the host. In our experience howevereinbedded domain
specific language approach does not scale very well, andodrigcularly difficult to
encode the domain specific type systems [30] and syntaxhietbast language.

1.3 The Xen solution

The examples above demonstrate that at a foundationathemel is an impedance mis-
match between the XML, SQL and object data-models. In ouniopithe impedance
mismatch is too big to attempt a complete integration. (Thpadance mismatch be-
tween the object and XML data-models is treated in detaildnrapanion paper [25].)

140

Given these problems, our approach is to first take as ouirgigroint the type
system and object data-model of the middle tier programr@nguage. This is the
computational model that programmers are familiar withd #rat is supported by the
underlying execution engine.

We look at XML fidelity in terms of being able to serialize anesérialize as many
possible documents that are expressible by some given Xkrse language, and not
at how closely we match one of the XML data models in our prognéng language
once we have parsed an XML document. In other words, we cen3¥L 1.0 as
simply syntax for serialized object instances of our eretthost language. For SQL
fidelity we take the same approach: we require that SQL tafslede passed back and
forth without having the need to introduce additional |ayléte ADO.NET.

Hence, rather than trying to blindly integrate the wholehaf KML and SQL data-
models, we enrich the type system of the object-oriented laoguage (in our case
C!*) with a small number of new type constructors such as stretptes, and unions.
These have been carefully designed so that they integratreatly with the existing
type system.

On top of these type system extensions, we then add two nemsfof expressions
to the base language: generalized member access provitiesipaessions to traverse
hierarchical data, and comprehension queries to join elesrfeom different collec-
tions. Rather than limiting comprehension queries to @bdata or path expressions
on hierarchical data, we allow both forms of expressionsetaised on any collection,
no matter whether the data is in-memory or remotely storadiatabase. To seamlessly
handle queries on both on remote data sources and localalatses we use similar de-
ferred execution implementation techniques as in Haslg[II®¥]. Depending on the
data source, the result of a query is either a materializéidatimn or a SQL program
that can be sent to the database.

The result is Xen, a superset of @hat seamlessly blends the worlds of objects,
tables and documents. The code fragment below shows howsXarie to express the
same functionality that we have seen previously.

tr = pokemon =
select <tr><td>{Name}</td><td>{HP}</td></tr>
from Pokedex;

Table t =
<table><tr><th>Name</th><th>HP</th></tr>{pokemon} </ table>;

Response.Write(t);

In Xen, strongly typed XML values are first-class citizens.(ithe XML literal
<table>...</table> has type statidable) and SQL-styleselect queries are
built-in. Xen thus allows for static checking, and becalse3QL and XML type sys-
tems are integrated into the language, the compiler can dettarfjob at generating
efficient code that might run on the client but which also migé sent to the server.
Although Xen by design does not support the entirety of theD&@Wack and some
of the more advanced features of SQL, we believe that ourdygiem and language ex-
tensions are rich enough to support many potential scen&iow example we have been

141

able to program the complete set of XQuery Use Cases, andase{®l stylesheets,
and we can even serialize the classic XML Hamlet documetowit running into any
significant fidelity problems.

The next sections show how we have grown a modern objeatteddanguage (we
take C as the host language, but the same approach will work with, Jasual Basic,
C++, etc.) to encompass the worlds of tables and documerddding new typesse)
and expression$3).

2 The Xen type system

In this section we shall cover the extensions to theype system—streams, tuples,
discriminated unions, and content classes—and for eaefiyoconsider the new query
capabilities. In contrast to nominal types such as classests, and interfaces, the new
Xen types are mostlgtructuraltypes, like arrays in Java offC

We will introduce our type system extensions by examplerfabdetails of the Xen
type system can be found in a companion paper [24].

2.1 Streams

Streams represent ordered homogeneous collections oforermre values. In Xen
streams are most commonly generatedigyd return blocks. Stream generators
are like ordinary methods except that they may yield mudtilues instead of returning
a single time. The following methdérom generates a finite stream of integers: +
1,...,m:

static int * From(int n, int m){
while(n<=m) vyield return n++;
}

From the view of the host language, streams are typed refimisno¢ C's iterators
Iterators encapsulate the logic for enumerating elemdraslizctions.

Given a stream, we can iterate over its elements usitgeRistingforeach state-
ment. For instance, the following loop prints the integeosfn to m.

foreach(int i in From(n,m)) { Console.WriteLine(i); }

Streams and generators are not new concepts. They are sgpgra wide range
of languages in various forms [11, 20, 17, 21, 28]. Our apghads a little different in
that:

— We classify streams into a hierarchy of streams of diffelemgth.
— We automatically flatten nested streams.
— We identify the valuewull with the empty stream.

To keep type-checking tractable, we restrict ourselvesdddllowing stream types:
Tx denotes possibly empty and unbounded stredfitsdenotes streams of at most
one element, and’! denotes streams with exactly one element. We will #&eto

142

represent optional values, where the non-existence i€septed by the valueull
and analogously we usg! to represent non-null values.

The different stream types form a natural subtype hieranshgre subtyping cor-
responds to stream inclusion We write<: 7T to denote that typé is a subtype of
type T and we writeS = T to denote thatS is equivalent to7. Xen observes the
axiomsT! <: T, T <: T?andT? <: Tx. For instancel'? <: T reflects the fact
that a stream of at most one element is also a stream of atZeaselements. Non-
stream typed’ into the subtype hierarchy by placing them between nonvallies?’!
and possibly null value§'?. Thus allows for example to assign the vaBito the type
int?

Like C' arrays, streams are covariant. For unbounded streams tiastupf the
elements is via an identity conversion. This restrictiorargitees that upcasts of
streams are always constant time, and that the object igeaitthe stream is main-
tained. SupposButton is a subclass d€ontrol , then this rule says th&utton =
is a subtype of a stream of contrdBontrol =*. If the conversion is not the iden-
tity, we have to explicitly copy the stream. For example, vas convert stream
xs of typeint = into a stream of typ@bject * using the apply-to-all expression
xs.{ return (object)it; } . Optional and non-null types are covariant with
respect to arbitrary conversions on their element types.

In Xen streams are always flattened, there are no nestedhstiafastreams. At the
theoretical level this implies a number of type equivalender exampleT'x? = T'x
reflects the fact that at most one stream of zero or more el@nflattens into a single
stream of zero or more elements.

Flattening of stream types is essential to efficiently dei#th wecursively defined
streams. Consider the following recursive variation of filmection From that we de-
fined previously:

int * From(int n, int m){

if (n>m) {
yield break;
} else {
yield return n++; yield return From(n,m);
}
}
The recursive calyield return From(n,m); yields a stream forcing the type
of From to be a nested stream. The non-recursiveydald return n++; yields

a single integer thus forcing the return typeFobm to be a normal stream. As the type
system treats the typ@st * andint ** as equivalent this is type-correct.

Without flattening we would be forced to copy the stream poadiby the recursive
invocation, leading to a quadratic instead of a linear nurolbgields

int * From(int n, int m){
if (n >m) {
yield break;
} else {
yield return n++;

143

foreach(int it in From(n,m)) yield return it;

}
}

Flattening of stream types doest imply that the underlying stream is flattened via
some coercion, every element in a strearyiedd -ed at most once. Iterating over a
stream effectively perform a depth-first traversal over ithary tree produced by the

stream generators.

Non-nullness.The type T'! denotes streams with exactly one element, and since we
identify null with the empty stream, this implies that values of typlecan never be
null

Being able to express that a value cannohbk via the type system allowatatic
checking fomull pointers (see [7, 8] for more examples). This turns manyeipia!ly
unhandled) dynamic errors into compile-time errors.

One of the several methods in the .NET base class library theiws
an ArgumentNullException when its argument isnull is the function
IPAddress.Parse . Consequently, the implementation t#Address.Parse
needs an explicitull check:

public static IPAddress Parse(string ipString) {
if (ipString == null)
throw new ArgumentNullException("ipString");

}
Dually, clients of IPAddress.Parse must be prepared to catch an
ArgumentNullException . Nothing of this is apparent in the type of the

Parse method in ¢. In Java the signature d?arse would at least show that it
possibly throws an exception.

It would be much cleaner if thiypeof IPAddress.Parse indicated that it ex-
pects itsstring argument to be nonull

public static IPAddress Parse(string! a);

Now, the type-checker statically rejects any attempt t@ jpestring that might beull
to IPAddress.Parse

2.2 Anonymous structs

Tuples, oranonymous structas we call them, encapsulate heterogeneous ordered col-
lections values of fixed length. Members of anonymous straanh optionally be la-
belled, and labels can be duplicated, even at differentstypkembers of anonymous
structs can be accessed by label or by position. Anonymaurststare value types, and
have no object identity.

The functionDivMod returns the quotient and remainder of its arguments as a tupl
that contains two named integer fiektsuct{int Div, Mod;}

144

struct{int Div, Mod;} DivMod(int X, int y) {
return new(Div = xly, Mod = x%y);

}

The members of an anonymous struct may be unlabelled, fongeawe can create a
tuple consisting of a labelleButton and an unlabelledextBox as follows:

struct{Button enter; TextBox;} x =
new(enter=new Button(), new TextBox());

An unlabelled member of @ominaltype is a shorthand for the same member implicitly
labelled with its type.

As mentioned earlier, members of tuples can be accesseat bigtposition, or by
label. For example:

int m = new(47,11)[0];
Button b = x.enter;

As for streams, tuples are covariant provided that the upmas/ersion that would
be applied is the identity. Subtyping is lifted over field Beations as expected. This
means that we can assigew(enter=new Button(), new TextBox()) toa
variable of typestruct{Control enter; Textbox;} .

2.3 Streams+anonymous structs = tables

Relational data is stored in tables, which are sets of rowts &n be represented by
streams, and rows by anonymous structs, thus streams angnaoos structs together
can be used to model relational data.

The table below contains some basic facts about Pokemoraatkes such as
their name, their strength, their kind, and the Pokemon fwdrith they evolved (see
http://www.pokemon.com/pokedex/ for more details about these interesting
creatures).

| Name [HP] Kind | Evolved |

Meowth | 50 [Normal
Rapidash| 70| Fire Ponyta
Charmelon80| Fire |Charmander
Zubat |40| Plant
Poliwag | 40| Water
Weepinbell 70| Plant | Bellsprout
Ponyta | 40| Fire

This table can be modelled by the variaBlekedex below:

enum Kind {Water, Fire, Plant, Normal, Rock}

struct{string Name; int HP; Kind Kind; string? Evolved;
}* Pokedex;

The fact that basic Pokemon are not evolutions of other Pokeshows up in that the
Evolved column has typstring?

145

2.4 Discriminated union

A value of adiscriminated uniorholds (at different times) any of the values of its
members. Like anonymous structs, the members of discrisdnanions can be labelled
or unlabelled.

Discriminated unions often appear in content classes §8éebelow). The type
Address uses a discriminated union to allow either a memBéaeet of type
string or a membePOBoxof typeint

class Address {
struct{
choice{ string Street; int POBox; };
string City; string? State; int Zip;
string Country;
2
}

The second situation in which discriminated unions are uséud the result types
of generalized member access (§82). For example, whem has type?okemon, the
wildcard expressiop. * selects all members gf which returns a stream containing
all the members of a Pokemon and has type

choice{string; int; Kind; string?} *

Using the subtype rules f@hoice and streams this is equivalent to
choice{string?; int; Kind;} *,

Unlike unions in C/C++ and variant records in Pascal wheersubave to keep
track of which type is present, values of an discriminateidnsin Xen are implicitly
tagged with the static type of the chosen alternative, mikehunions in Algol68. In
other words, discriminated unions in Xen are essentiallgiagf a value and its static
type. The type component can be tested with the confornstyeteas 7'. The expres-
sione was T is true forexactly oneT" in the union. This invariant is maintained by
the type system. You can get the value component of a digeaiied union value by
downcasting.

Labelled members of discriminated unions are just nestegleton anonymous

structs, for examplehoice{int Fahrenheit; int Celsius;} is a shorthand
for the more verbosehoice{struct{int Fahrenheit;}; struct{int
Celsius;};} . Discriminated unions are idempotent (duplicates are weu) as-

sociative and commutative (nesting and order are ignored).

Values of non-discriminated unions can be injected intcsarithinated union. This
rule allows us to conveniently inject values into a discriated union as in the example
below:

choice{int Fahrenheit; int Celsius;} = new(Fahrenheit=47);

Finally, streams distribute over nested discriminate@ns, Again this is essential
for recursively defined streams as in the following examphicv returns a stream of
integers terminated byue :

146

choice{int; bool;} * f(int n) {
if(n==0){
yield return true;
} else {
yield return n;
yield return f(--n);
}
}

2.5 Content classes

Now that we have introduced streams, anonymous structsgdiandminated unions,
our type system is rich enough to model a large part of the X82ma language; our
aim is to cover as much of the essence of XSD [31] as possihletwhoiding most of
its complexity.

The correspondence between XSD particles sustsequence> and<choice>
with local element declarations and the type construbrsct andchoice with
(labelled) fields should be intuitively clear. Likewisegthelationship of XSD parti-
cles with occurrence constraints to streams is unmistek#dar 7'« the attribute pair
(minOccurs, maxOccurs) is (0, unbounded) ,for T?itis (0, 1) ,and for
Tlitis (1,1)

The content clas&ddress that we defined i§2.4 corresponds to the XSD schema
Address below:

<element name="Address"><complexType>
<sequence>
<choice>
<element name="Street" type="string">
<element name="POBox" type="integer">
</choice>
<element name="City" type="string">
<element name="State" type="string" minOccurs="0"/>
<element name="Zip" type="integer"/>
<element name="Country" type="string"/>
</sequence>
</complexType></element>

A Xen content class is simply a normal Class with a single unlabelled member and
zero or more methods. As a consequence, the content can @rlype accessed via
its individually named children, which allows the compiterchoose the most efficient
data layout.

The next example schema defines two top level elenfaunitsor andBook where
Book elements can have zero or méxethor members:

<element name="Author"><complexType>
<sequence>
<element name="Name" type="string"/>

147

</sequence>
</complexType></element>

<element name="Book'"><complexType>

<sequence>

<element name="Title" type="string"/>

<element ref="Author" minOccurs="0" maxOccurs="unbound ed"/>
</sequence>

</complexType></element>

In this case, the local element reference is modelled by &betied field and the two
elements are mapped onto the following two type declaration

class Author { string Name; }
class Book { struct{ string Title; Author *: }}

All groups such as the one used in the following schema foctineplex typeName

<element name="Name"><complexType>
<all>
<element name="First" type="string"/>
<element name="Last" type="string"/>
</all>

</complexType></element>

are mapped to ordinary fields of the containing type:
class Name { string First; string Last; }

As these examples show, both top-level element declasaiod named complex
type declarations are mapped to top-level types. This allosvto unify derivation of
complex types and substitution groups of elements usinglata inheritance. Further
details of the relationship between the XML and Xen data-ef®dan be found in a
companion paper [25].

3 Xen expressions

In the previous sections we have concentrated on the Xenstygiem. In this section
we will consider new Xen expression forms to construct,dfarm, query and combine
Xen values.

3.1 XML constructors

Xen internalizes XML serialized objects into the languagmveniently allowing pro-
grammers to use XML fragments as object literals. For irtame can create a hew
instance of ar\ddress object using the following XML object literal:

148

Address a = <Address>
<Street>One Microsoft Way</Street>
<City>Redmond</City>
</Address>;

The Xen compiler contains a validating XML parser that ana/the XML literal and
“deserializes” it at compile time into code that will constt the correcAddress
instance. This allows Xen programmers to treat XML fragmestfirst-class values in
their code.

XML literals can also have placeholders to descdipramiccontent (anti-quoting).
We use the XQuery convention whereby an arbitrary exprassigtatement block can
be embedded inside an element by escaping it with curly brace

Author NewAuthor(string name) {
return <Author>{name.ToUpper()}</Author>;

}

Embedded expressions must return or yield values of theregtjtype (in this case
string). Validation of XML literals with placeholders is non-tiad and is the subject
of a forthcoming paper.

Note that XML literals are treated by Xen as just object carbors, there is noth-
ing special about content classes. In fact, we can write Xitélrdls to construct values
of any type, for example, the assignment

Button b = <Button>
<Text>Click Me</Text>
</Button>;

creates an instance of the standBrdton class and sets itSext field to the string
"Click Me"

3.2 Stream generators, iterators and lifting

To make the creation of streams as concise as possible, ave @atlonymous method
bodiesas expressions. In the example below we assign the (coradispinfinite stream
of positive integers to the variabiets :

/o, 1, 2 ..
int * nats = { int i=0; while(true) yield return i++; };

Our stream constructors (?, !) are functors, and hence we implicitift opera-
tions on the element type of a stream (such as member or pycmaess and method
calls) over the stream itself. For instance, to convert éadilvidual string in a stream
ss of strings to uppercase, we can simply wsteToUpper()

We do not restrict this lifting to member access. Xen genzral
this with an apply-to-all block. We can write the previous example as
ss.{ return it.ToUpper(); } . The implicit argumenit refers successively
to each element of the strea®s.

149

In fact, the apply-to-all block itself can yield a streamwhich case the resulting
nested stream is flattened in the appropriate way. For exafwblerenats is a stream
of integers):

i1, 22, 333, 4444, ..
int * rs = nats.{ for(i=0; i<it; i++) yield return it; };

If an apply-to-all block returnsoid , no new stream is constructed and the block
is eagerly applied to all elements of the stream. For exatogieint all the elements of
a stream we can just write:

nats.{ Console.WriteLine(it); };

Apply-to-all blocks can be stateful, so we can use them toedictions (in the func-
tional community calledolds). For example, we can sum all integers in an integer
streanxs as follows:

int sum(int * xs){
int s = 0; xs{ s +=it; }; return s;

}

We need to be careful when lifting over non-null types, sitieefact that the re-
ceiver object is nohull does not imply that its members are motl either:

Button! b = <Button/>;
Control p = b.Parent; // Parent might be null

Hence the return type of lifting over a non-null type is noatanteed to return a non-
null type.

Optional types provide a standard implementation ofille design pattern; when
a receiver of typel'? is null , accessing any of its members retunuodl

string? t = null;
int? n = tlLength; // n = null

In Objective-C [16] this is the standard behaviour for anjeobthat can baull
Member access is not only lifted over streams, but over alictiral types.
For example the expressiors.x will return the streamtrue, 1, 2 of type

choice{bool; int;}+ whenxs is defined as:
struct{ bool x; struct{int x;} *; } Xs =
new(x=true
, {yield return new(x=1); yield return new(x=2);}
)i

Lifting over discriminated unions introduces a possipilitof nullness
for members that are not in all of the alternatives. Suppasehas type
choice{ int; string; } . Since only string has alLength member,
the type ofx.Length isint? which reflects the fact that in case the dynamic type of
x isint , the result ok.Length will be null . Sinceint andstring both have a
membelGetType() ,the returntype ok.GetType() isType:

150

choice{ int; string; } x = 4711,
int? n = x.Length; /I null
Type t = x.GetType(); // System.Int32

In case the alternatives of a union have a member of difféypetin common, the result
type is the union of the types of the respective members.

Binary and unary operators are lifted element-wise oveastis. For example we
can add two optional integessry to get another optional integer. If eitheror y is
null the result of adding them izull as well. Lifting of optional types implements
SQL's three-value logic.

Often we want tdilter a stream according to some predicate on the elements of
the stream. For example, to construct a stream with only addbers, we filter out
all even numbers from the streamts of natural numbers using the filter expression
nats[it%2==1] . For each element in the stream to be filtered, the predisateai-
uated with that element boundito . Only if the predicate is true the element becomes
part of the new stream.

int * oddsl = nats[it%2 == 1],
In fact, filters can be encoded using an apply-to-all block:

int * odds2 = nats{if(it%2 == 1) yield return it;};

3.3 Further generalized member access

As we have seen, Xen elegantly generalizes familian@mber access resulting in
compact and clear code. However we should like to provideenilexible forms of
member access: Xen providefdcard, transitiveandtype-basedccess. These forms
are similar to the concepts of nametest, abbreviated vel&dcation paths and name
filters in XPath [1], but have been adapted to work uniformiyodject graphs.

Wildcards provide access to all members of a type withoutlimgeto specify the
labels. For example, suppose that we want to have all fields Afldress :

choice{string; int;} * addressfields = Microsoft. *

The wildcard expression returns the content of all accssiields and prop-
erties of the variableMicrosoft in their declaration order. In this case
"One Microsoft Way" ,"Redmond" , 98052, "USA".

Transitive member access, written @s.m , returns all accessible members
that are transitively reachable froein depth-first order. The following declaration of
authors (lazily) returns a stream containing &luthor s of allBooks in the source
streambooks :

Book F = <Book>
<Title>Faust</Title>
<Author>Goethe</Author>

</Book>;

Book K <Book>

151

<Title>De Klompeniers</Title>
<Author>Jac. Broersen</Author>
</Book>;

Book* books = { yield F; yield K; };
string * authors = books...Author;

Transitive member access abstracts from the concretesesgegion of a tree; as long
as the mentioned member is reachable and accessible ltsigakturned.

Looking for just a field name might not be sufficient, espégifar transitive queries
where there might be several reachable members with the same, but of different
type. In that case we allow an additional type-test to reisthe matching members.
A type-test onT selects only those members whose static type is a subtyfie Bbr
instance, if we are only interested in Microsoff©Box number, andZip code, we
can write the transitive queiMicrosoft...int:: *,

3.4 Comprehensions

The previous sections presented our solutions to queryogrdents. However for ac-
cessing relational data, which we model as streams of anoaystructs, simple SQL
gueries are more natural and flexible. Here we only consligeintegration of the SQL
select-from-where clause, and defer the discussion of more advanced features
such as data manipulation and transactions to a future paper

The fundamental operations of relational algebrasmiection projection union,
differenceandjoin. Here are two simple SQL-style comprehension queries:

Pokemonx psl =
select * from Pokedex where Kind == Normal,;
struct{string Name; Kind Kind;} * ps2 =
select Name, Kind from Pokedex;

In practice, the result types of SQL queries can be quitelwegband hence it be-
comes painful for programmers to explicitly specify typ®mce the compiler already
knows the types of sub-expressions, the result types ofegiean be inferred automat-
ically. Providing type declarations for method local vafes is not necessary, and we
can simply write:

ps2 = select Name, Kind from Pokedex;

without having to declare the type p§2.

Union and difference present no difficulty in our framewoftkey can easily be
handled with existing operations on streams. Union comedés two streams into a
single stream. Difference takes two streams, and returesvestream that contains all
values that appear in the first but not in the second stream.

The real power of comprehensions comes from join. Join tbkesnput streams
and creates a third stream whose values are composed byraoqiriembers from the
two input streams. For example, here is an expression thaitsepairs of Pokemons
that have evolved from each other:

152

select p.Name, g.Name
from p in Pokedex, g in Pokedex
where p.Evolved == q

Again, we should like to emphasize the elegant integratiodata in Xen. The
select expression works on arbitrary streams, whether mangor on the hard disk;
streams simply virtualize data access. Strong typing ma&esaccess secure. But there
is no excessive syntactic burden for the programmer as thattgpes of queries are
inferred.

4 Conclusion

The language extensions proposed in this paper supporthm®QL [2] and the XML
schema type system [31] to a large degree, but we have ndtwittalall of the SQL
features such as (unique) keys, and the more esoteric XSDrésasuch as redefine.
Similarly, we capture much of the expressive power of XPdfh XQuery [3] and
XSLT [5], but we do not support the full set of XPath axis. We able to deal smoothly
with namespaces, attributes, blocking, and facets howewerently we are investigat-
ing whether and which additional features need to be addedrttanguage.

In summary, we have shown that it is possible to have both &Qles and XML
documents as first-class citizens in an object-orientegliage. Only a bridge between
the type worlds is needed. Building the bridge is mainly agieeering task. But once
it is available, it offers the best of three worlds.

Acknowledgments

We should like to acknowledge the support, encouragemedtfeedback from Mike
Barnett, Nick Benton, Don Box, Luca Cardelli, Bill Gatesg®t Lucco, Chris Lu-
cas, Todd Proebstring, Dave Reed, Clemens Szyperksi, astisRo Yavorskiy and
the hard work of the WebData languages team consisting dfawilAdams, Joyce
Chen, Kirill Gavrylyuk, David Hicks, Steve Lindeman, Chtisvett, Frank Mantek,
Wolfgang Manousek, Neetu Rajpal, Herman Venter, and Matt&¥a This paper was
written whilst Bierman was in the University of Cambridger@uauter Laboratory and
supported by EU AppSem II.

153

Bibliography

[1] A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, MiyKJ. Robie, and
J. Simeon. XML path language 2.0ttp://www.w3.org/TR/xpath20/

[2] G.M. Bierman and A. Trigoni. Towards a formal type systtsan ODMG OQL.
Technical Report 497, University of Cambridge Computerdralory, 2000.

[3] S. Boag, D. Chamberlin, M.F. Fernandez, D. Florescu, Jo- R
bie, and J. Siméon. XQuery 1.0: An XML query language.
http://www.w3.org/TR/xquery/ .

[4] A.S. Christensen, A. Muller, and M.I. Schwartzbach.t8tanalysis for dynamic
XML. In Proceedings of Plan)2002.

[5] J.J. Clark. XSL Transformations 1.0ttp://www.w3.0rg/TR/xslt

[6] R. Connor, D. Lievens, and F. Simeoni. Projector: a pédltityped language for
querying XML. InProceedings of Plan)X2002.

[7]1 M. Fahndrich and R.M. Leino. Declaring and checking maril types in an
object-oriented language. Rroceedings of OOPSLA2003.

[8] C. Flanagan, R. Leino, M. Lillibridge, C. Nellson, J. $and R. Stata. Extended
static checking for Java. IRroceedings of PLDI2002.

[9] V. Gapeyev and B.C. Pierce. Regular object typesPinceedings of ECOQP
2003.

[10] P. Graunke, S. Krishnamurthi, S.V.D. Hoeven, and Mldigén. Programming
the web with high-level programming languagesPhoceedings of ASR001.

[11] R. Griswold and M. Griswold.The Icon programming languagérentice Hall,
1990.

[12] H. Hosoya and B.C. Pierce. XDuce: A typed XML procesdamgguage (prelim-
inary report). InProceedings of WebDBiumber 1997 in LNCS, pages 226-244,
2000.

[13] P. Hudak. Building domain specific embedded langua@€3M computing sur-
veys 28(4), 1996.

[14] M. Kempa and V. Linnemann. On XML objects. Rroceedings of Plan)2002.

[15] O. Kiselyov and S. Krishnamurthi. SXSLT: A manipulatianguage for XML.
In Proceedings of PADI2003.

[16] S. KochanProgramming in Objective CSams, 2003.

[17] A. Krall and J. Vitek. On extending Java. Rroceedings of JMLC1997.

[18] T. Lahiri, S. Abiteboul, and J. Widom. Ozone: Integnafistructured and semi-
structured data. IRroceedings of DBP[2000.

[19] D. Leijen and E. Meijer. Domain specific embedded corgil InProceedings of
USENIX Conference on Domain-specific languad€99.

[20] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C.SchaffeR. Scheiffer, and
A. Snyder.CLU reference manualSpringer Verlag, 1981.

[21] B. Liskov, M.Day, M. Herlihy, P. Johnson, and G. LeaveSRGUS reference
manual. Technical report, MIT, 1987.

[22] E. Meijer. Server side web scripting in Haskelburnal of Functional Program-
ming, 10(1), 2000.

154

[23] E. Meijer, D. Leijen, and J. Hook. Client-side web stirg with HaskellScript.
In Proceedings of PADL2002.

[24] E. Meijer, W. Schulte, and G.M. Bierman. The essence ehXSubmitted for
publication, 2003.

[25] E. Meijer, W. Schulte, and G.M. Bierman. Programmindhagircles, triangles
and rectangles. IRroceedings of XML 2002003.

[26] E. Meijer and M. Shields. XM: a functional language for constructing and ma-
nipulating XML documents. Unpublished paper, 1999.

[27] E. Meijer and D. van Velzen. Haskell server pages.Ptaceedings of Haskell
workshop 2000.

[28] S. Murer, S. Omohundro, D. Stoutamire, and C.Szypeftiation abstraction in
Sather ACM ToPLA$18(1):1-15, 1996.

[29] T.A. Proebsting. Disruptive programming languagehtesdogies. Unpublished
note, 2002.

[30] M. Shields and E. Meijer. Type-indexed rows.Proceedings of POP12001.

[31] J. Simeon and P. Wadler. The essence of XMLPtaceedings of POPL2003.

[32] P. Thiemann. WASH/CGI: Server side web scripting widssions and typed
compositional forms. IfProceedings of PADL2002.

[33] N. Welsh, F. Solsona, and I. Glover. SchemeUnit and B&t@L: Two little lan-
guages. InProceedings of Workshop on Scheme and functional progragymi
2002.

155

156

Syntax sugar for FC++:
lambda, infix, monads, and more

Brian McNamara and Yannis Smaragdakis

College of Computing
Georgia Institute of Technology
http://www.cc.gatech.edu/ ~yannis/fc++/
lorgon,yannis@cc.gatech.edu

Abstract. We discuss the FC++ library, a library for functional pragraing in
C++. We give an overview of the library’s features, but foonsrecent additions
to the library. These additions include the design of oumfbiaa” sublanguage,
which we compare to other lambda libraries for C++. Our lambdblanguage
contains special syntax for programming with monads, whiehalso discuss in
detail. Other recent additions which we discuss are “infixction syntax” and
“full functoids”.

1 Introduction

FC++[7, 8] is a library for functional programming in C++. WWiave recently added

a number of new features to the FC++ library, most notably@ression template
library for creating dambdasublanguage. The lambda sublanguage contains special
syntax for programming witimonadsn the style of Haskell. We focus our discussion
on the design of this portion of the library (Section 5 andt®ect), but begin with a
run-down of the features of FC++ (Section 2 and Section 3)elsas some important
implementation details (Section 4).

2 Overview

In FC++, programmers define and dsactoids Functoids are the FC++ representation
of functions; we will discuss them in more detail in SectioM#Ae latest version (v1.5)
of the FC++ library supports a number of useful featureduntiag

— higher order, polymorphic functoids (“direct” functoids)

— lazy lists

— a large library of functoids, combinators, and monads (mbsthich duplicate a
good portion of the Haskell Standard Prelude[2])

— currying

infix functoid syntax

dynamically-bound functoids (“indirect” functoids)

a small library of effect combinators

interfaces to C++ Standard Library data structures andristhgos via iterators

157

— ways to transform methods of classes and normal C++ furetidn functoids
— reference-counted “smart” pointers for memory manageriesgd internally by,
e.g., our lazy list data structure)

We'll briefly discuss each of these features in the nextsactiater on we will discuss

— special syntax to mimic functional language constructuitinglambda let, and
letrec as well aglo-notation andcomprehensionfor arbitrary monads

in detail.

The FC++ library is about 9000 lines of C++ code, and is wnittgth strict con-
formance to the C++ standard[4], which makes it portabldltofahe major brands of
compilers.

3 Short Examples of various features

FC++ functoids can be simultaneously higher order (ablake functoids as arguments
and return them as results) and polymorphic (template fomstwhich work on a vari-
ety of data types). For example, consider the library fumtompose() , which takes
two functoids and returns the composition:

/Il compose(f, g)(args) == f(g(args))

We could define a polymorphic functoatidSelf() , which adds an argument to it-
self:

/l addSelf(x) == x + x

We could then composeddSelf with itself, and the result would still be a polymor-
phic functoid:

int x = 3;

std::string s = "foo";

compose(addSelf, addSelf)(x) // yields 12

compose(addSelf, addSelf)(s) // yields "foofoofoofoo"

Section 4 describes the infrastructure of these “direattiids”, which enables this feat
to be implemented.

FC++ defines a lazy list data structure calladt . List s are lazy in that they
need not compute their elements until they are demandedeample, the functoid
enumFrom() takes an integer and returns the infinite list of integengiatawith that
number:

enumFrom(1) /I yields infinite list [1,2,3,...]

A number of functoids manipulate such lists; for instanwp() applies a functoid to
each element of a list:

map(addSelf, enumFrom(1)) // yields infinite list [2,4 6,. -]

The FC++ library defines a wealth of useful functoids and dgp@s. There are
named functoids for most C++ operators, like

158

plus(3,4) /I 3+4 also minus, multiplies, etc.

There are many functoids which work drst s, including map. Most of the
List functions are identical those defined in Haskell[2]. Aduiglly, a num-
ber of basic functions (like the identity functiom)), combinators (likeflip
flip(f)(x,y)==f(y,x)), and data types (likkist and Maybe; Maybe will
be discussed in Section 6) are designed to mimic exactlytteskell counterparts. We
also implement functoids for such C++ constructs as coasiralls anchew calls:

construct3<T>()(x,y,z) /I yields T(x,y,z)
new2<T>()(x,y) /I yields new T(x,y)

and many more (some of which are described below).

Functoids are curryable. That is, we can call a functoid witime subset of its
arguments, returning a new functoid which expects the fesieoarguments. Currying
of leading arguments can be done implicitly, as in

minus(3) /I yields a new function "f(x)=3-x"

Any argument can be curried explicitly using the placeholdwiable (defined by
FC++):

minus(3,_) /I yields a new function "f(x)=3-x"
minus(_,3) /I yields a new function "f(x)=x-3"

We can even curry aM of a function’s arguments with a call tmrryN() , returning
athunk(a zero-argument functoid):

curry2(minus, 3, 2) // yields a new thunk "f()=3-2"

FC++ functoids can be called using a special infix syntax [@mented by over-
loadingoperator™):

x fy /I Same as f(x,y). Example: 3 “plus”™ 2

This syntax was also inspired by Haskell; some function reafiilee plus) are more
readable as infix than as prefix.

FC++ definesndirect functoidswhich are function variables which can be bound
to any function with the same (monomorphic) signature.rigxtifunctoids are imple-
mented via thé&unN classes, which take template arguments describing the argument
types, as well as a template argument describing the rggat For example:

/I Note: plus is polymorphic, the next line selects just
I "int" version

Fun2<int,int,int> f = plus;

f(3,2); Il yields 5

f = minus;

f(3,2); Il yields 1

Indirect functoids are particularly useful in the implertetion of callback libraries and
some design patterns[11].

The FC++ library defines a number of effect combinators. Areatfcombinator
combines an effect (represented as a thunk) with anothetdich Here are some ex-
ample effect combinators:

159

/I before(thunk,f)(args) == { thunk(); return f(args); }
/I after(g,thunk)(args) == { R r = g(args); thunk(); return r "

An example: suppose you've defined a functeiiteLog() which takes a string and
writes it to a log file. Then

before(curryl(writeLog, "About to call foo()"), foo)

results in a new functoid with the same behaviofag) , only it writes a message to
the log file before callingoo()

FC++ interfaces with normal C++ code and the STL. Tist class implements
the iterator interface, so that lists can work with STL altfons and other STL data
structures can be converted intést s. The functoidptr_to_fun() transforms
normal C++ function pointers into functoids, and turns noetpointers into functions
which take a pointer to the receiver object as an extra fijgtabbHere are some exam-
ples, which use currying to demonstrate that the resyjtofto_fun is a functoid:

ptr_to_fun(&someFunc)(x)(y) /I someFunc(x,y)
ptr_to_fun(&Foo::meth)(@aFooPtr)(x) // aFooPtr->meth(x)

FC++ comes with its own reference-counted smart pointBef. and IRef .
Ref<T> works just like aT*, only with reference countingRef<T> implements
intrusive reference counting; an efficient form of referemounting which requires
supportive help from the type being used (hérk,Internally, the library usefRef s
in the implementation dfist s and indirect functoids.

4 Where is the magic?

In the previous section we saw how functoids can be used.rfmless, we have not
shown you how the polymorphic functoids inside FC++ are enpénted or how to
define your own polymorphic functoids. In this section wewhwow functoids are

defined, and how they gain the special functionality FC++psuis (like currying and

infix syntax).

4.1 Defining polymorphic functoids

To create your own polymorphic functoid, you need to creatdaas with two main
elements: a templatgperator() and a member structure template narségl . To
make things concrete, consider the definitiomalp (or rather, the classlap, of which
mapis a unique instance) shown in Figure 1. This definition ukeshelper template
FunType , which is a specialized template for different numbers glianents. For two
argumentsk-unType is essentially:

template <class Al, class A2, class R> struct FunType {
typedef R ResultType; typedef Al ArglType; typedef A2 Arg2T ype; };

We can now analyze the implementationMéap. The operator() will allow
instances of this class to be used with regular function galtax. What is special
in this case is that the operator is a template, which meaatsittitan be used with

160

struct Map {
template <class F, class L>
struct Sig : public FunType<F,L,List<typename F:templat e
Sig<typename L::ElementType>::ResultType> > {};

template <class F, class T>
typename Sig<F, List<T> >::ResultType
operator()(const F& f, const List<T>& |) const {

if(null(l))
return NIL;
else
return cons(f(head(l)), curry2(Map(), f, tail(l)));
}
} map;

Fig. 1. Definingmapin FC++

arguments of multiple types. When an instanc#apis used with argumenfsand| ,
unification will be attempted between the typed afindl , and the declared types of
the parametersonst F& , andconst List<T>&). The unification will yield the
values of the type parametdfsand T of the template. This will determine the return
type of the functoid.

Now, let's examine th&ig member class of th®lap class. By FC++ convention,
the Sig member should be a template over the argument types of thletidanyou
want to express (in this case the function typand the list typd.). TheSig member
template is used to answer the question “what type will youacfion return if | pass it
these argument types?” The answer inkegp code is:

List< F::Sig<L::ElementType>::ResultType >

(we have elided thiypename andtemplate keywords for readability). This means:
“map returns d.ist of whatF would return if passed an element like the ones in list
L".

In Haskell, one would express the type signatureap as:

map :: (a -> b) -> [a] -> [b]

The Sig members of FC++ functoids essentially encode the sameniraoon, but in

a computational formSig s are type-computing compile-time functions that are dalle
by the C++ unification mechanism for function templates anglement the FC++
type system. This type system is completely independemnt fiee native C++ type
system—maps type as far as C++ is concerned is jutass Map . Other FC++
functoids, however, can read the FC++ type information fitve Sig member of
Map and use it in their own type computations. Tim@p functoid itself uses that in-
formation from whatever functoid happens to be passed dsstsaargument (see the
F::Sig<L::ElementType>::ResultType expression, above).

161

4.2 Using theFullN wrappers to gain functionality

The definition ofmap in the previous subsection creates what we call a “basictdire
functoid” in FC++. However, a number of features of func®{duch as currying and
infix syntax, which we saw in Section 3, and lambda-awarenesieh will shall de-
scribe in Section 5) only work on so-called “full functoids”

Transforming a normal functoid into a full functoid is eaBgr example, to define
mapas a full functoid, we change the definition from Figure 1 from

struct Map {/ * .. =/} map;
to

struct XMap { / =+ ... =/}
typedef Full2<XMap> Map;

Map map;

That is,FullN<F> is the type of the full functoid created out of the basiargument
functoid F. The FullN template classes serve as a wrapper around basic functoids.
They add all of the FC++ features we are accustomed to (suchiragng and infix
syntax) to the basic functoid.

Full functoids are a new feature of the FC++ library. Legagglecan promote its
basic functoids into full functoids either by making the mimodification to the defin-
ition described above, or within an expression by callirgftmctoidmakeFullN()
which takes aN-argument basic functoid as an argument and returns thesgmnding
full functoid as a result.

5 Lambda

Lambda is no stranger to C++. There are a number of existing braries which
enable clients to create new, anonymous functions on-$h&dime such libraries, like
the C++ STL[12] and its “binders”, or previous versions oftRC allow the creation of
new functoids on-the-fly only either by binding some subset functions arguments
to values (currying) or by using combinators (ligempose). Other libraries, like the
Boost Lambda Library[5] and FACT![13] enable the creatidrabitrary lambdas by
using expression templates.

5.1 Motivation

We were motivated to implement lambda by our interest in mogning with monads.
Experience with previous versions of FC++ made it clear #rhttrary lambdas are
a practical necessity if one wants to program with monaddeOVersions of FC++
had a number of useful combinators which made it possiblepoess most arbitrary
functions, but lambda makes it practical by making it redelaBor example, while
implementing a monad, in the middle of an expression you trdigtover that you
need a function with this meaning:

lambda(x) { f(g(x),h(x)) }

162

It is possible to implement this function using combinatwihout lambda), but the
resulting code is practically unreadable:

duplicate(compose(flip(compose)(h),compose(f,g)))

Alternatively, you can define the new functoid at the top legie it a name, and then
call it:

struct XFoo {
template <class X> struct Sig : public FunType<X,
typename RT<F<typename RT<G,X>::ResultType,
typename RT<H,X>::ResultType>::ResultType> {};
template <class X>
typename Sig<X>::ResultType operator()(const X& x) const {
return f(g(x),h(x));

}
h
typedef Fulll<XFoo> Foo;
Foo foo;
/I later use "foo"

but clearly this is way too much work, especially when thection in question is a
one-time-use (“throwaway”) function. Lambda is the onlagenable solution when
you need to define short, readable, arbitrary functionshenrfliy.

5.2 Problematic issues with expression-template lambdabliaries

Despite the advantages to lambda, we have always maintaiiegjree of wariness
when it comes to C++ lambda libraries (or any expression tetagibrary), owing to
the intrinsic limitations and caveats of using expressamglates in C++. The worri-
some issues with expression template libraries in generddinbda libraries in partic-
ular) fall into four major categories:

— Accidental/early evaluation. The biggest problem with expression template
lambda libraries comes from accidental evaluation of C+gressions. Consider
a short example using the Boost Lambda Library:

inta)] ={5, 3,8 4%}
for_each(a, a+4, cout << _1 << "\n");

The third argument téor_each() creates an anonymous function to print each
element of the array (one element per line). The output is wieavould expect:

5
3
8
4

If we want to add some leading text to each line of output, ikmpting to change
the code like this:

inta)] ={5, 3,8 4%}
for_each(a, a+4, cout << "Value: " << _1 << "\n");

163

But (surprise!), the new program prints the added text onlyec(rather than once
per line):

Value: 5
3
8
4

This is becausecbut << "Value: " " is a normal C++ expression that the
C++ compiler evaluates immediately. Only expressionsliriag placeholder vari-
ables (like_1)* get “delayed” from evaluation by the expression templalégse
accidents are easy to make, and hard to see at a glance.

— Capture semantics (lambda-specific)Since C++ is an effect-ful language, it
matters whether free variables captured by lambda are rephy-value or by-
reference. The library must choose one way or the other,aiige a mechanism
by which users can choose explicitly.

— Compiler error messagesC++ compilers are notoriously verbose when it comes
to reporting errors in template libraries. Things are evers& with expression tem-
plate libraries, both because there tend to be more levelgth of template in-
stantiations, and because the expression templates tyggpose clients to some
new/unfamiliar syntax, which makes it more likely for clisrio make accidental
errors. Indecipherable error messages may make an otleamsas$ul library be too
annoying for clients to use.

— Performance.Expression template libraries sometimes take orders ohinatp
longer to compile than comparably-sized C++ programs witlexpression tem-
plates. Also, the generated binary executables are oftext hanger for programs
with expression templates.

For the most part, these problems are intrinsic to all exgioastemplate libraries in
C++. As aresult, when we set out to design a lambda librarfF@¥+, we kept in mind
these issues, and tried to design so as to minimize theirdmpa

5.3 Designing for the issues

Here are the design decisions we have made to try to minirmeaessues described in
the previous subsection.

— Accidental/early evaluation.Since the problem itself is intrinsic to the domain,
the only way to “attack” this issue is prevention. That is, @@anot prevent users
from making mistakes, but we can try to design our lambda tkentlaese mistakes
less common and/or more immediately apparent. To this eadhave designed the
lambda syntax to be minimalist and visually distinct:

! Additionally, one can use other special constructs defineBIH. . In the example above, we

could get the desired behavior by calling the BLL functeammstant() on the literal string,
to delay evaluation.

164

e Minimalism. Rather than overload a large number of operators and inelude
large number of primitives, we have chosen a minimalist aagh. Thus we
have only overloaded four operators for lambda languageaydrackets for
postfix function application, modulus for infix function digation, comma for
function argument lists, and equality for “let” assignn®gnSimilarly, apart
from lambda , the only primitives we provide are those flet , letrec
and if-then-else expressions. These provide a minimalafaepressive power
for lambda, without overburdening the user with a wide if@ee. A narrow
interface seems more likely to be remembered and thus lessmone.

e Visual distinctiveness.Rather than trying to make lambda expressions “blend
in” with normal C++ code, we have done the opposite. We haeseh oper-
ators which look big and boxy to make lambda expressionsitstaut” from
normal C++ code. By convention, we name lambda variablds gépital let-
ters. By making lambda expressions visually distinct framnnmal C++ code,
we hope to remind the user which code is “lambda” and whicleé¢stinormal
C++", so that the user won't accidentally mix the two in waykieh create
accidents of early evaluation.

— Capture semantics (lambda-specific)The FC++ library passes arguments by
const& throughout the library. Effectively this is just anothee(paps efficient)
way of saying “by value”. As a result, FC++ lambdas captue=frariables by
value. As with the rest of the FC++ library, the user can @i choose refer-
ence semantics by capturipgintersto objects, rather than the capturing objects
themselves.

— Compiler error messagesMeta-programming can be used to detect some user
errors and diagnose them “within the library” by injecticgstom error mes-
sagefo, 10] into the compiler output. Though many kinds of erroesnot be
caught early by the library (lambdas and functoids can diepassed around in
potentially legal contexts, but then finally used deep witsome template in the
wrong context), there are a number of common types of erhatscan be nipped
in the bud. The FC++ lambda library catches a number of thgsestof errors and
generates custom error messages for them.

— Performance.There seems to be little that we (as library authors) can de. e
expression template libraries continue to become morelpgpue can only hope
that compilers will become more adept at compiling themkjyi¢n the meantime,
clients of expression template libraries must put up witigler compile times and
larger executables.

Thus, given the intrinsic problems/limitations of expiessemplate libraries, we have
designed our library to try to minimize those issues whenpussible.

5.4 Lambdain FC++

We now describe what it looks like to do lambda in FC++. Figzighows some exam-
ples of lambda. There are a few points which deserve furtiention.

Inside lambda, one uses square brackets instead of rousdarmstfix functional
call. (This works thanks to the lambda-awareness of fultfaidls, mentioned in Sec-
tion 4.) Similarly, the percent sign is used instead of theatcor infix function call.

165

/I declaring lambda variables
LambdaVar<1> X;
LambdaVar<2> Y;
LambdaVar<3> F;

/I basic examples
lambda(X,Y)[minus[Y,X]] /I flip(minus)
lambda(X)[minus[X,3]] /I minus(_,3)

/I infix syntax
lambda(X,Y)[negate[3 %multiplies% X] %plus% Y]

I let
lambda(X)[let[Y == %plus% 3,
_ F == minus[2]
lin[FIY] T]
/I if-then-else
lambda(X)[ifO[X %less% 10, X, 10]] // also ifl, if2

Il letrec
lambda(X)[letrec[F==lambda(Y)[if1l[Y %equal% O,
1

Y %multiplies% F[Y%minus%1]]
lin[F[X] 11 /I factorial

Fig. 2.Lambda in FC++

These symbols make lambda code visually distinct so thaapipearance of normal-
looking (and thus potentially erroneous) code inside a @anWill stand out. Since
operator|] takes only one argument in C++, we overload the comma opei@to
simulate multiple arguments. Occassionally this can cansarly evaluation problem,
as seen in the code here:

/I assume f takes 3 integer arguments
lambda(X)[f[1,2,X]] /I oops! comma expression "1,2,X"
/I means "2,X"
lambda(X)[f[1][2][X]] // ok; use currying to avoid the issu e

Unfortunately, C++ sees the expressidn2'” and evaluates it eagerly as a comma
expression on integefs-ortunately, there is a simple solution: since all full ftoids
are curryable, we can use currying to avoid comma. The issitiscomma suggest
another problem, though: how do we call a zero-argumentiominside lambda? We
found no pretty solution, and ended up inventing this syntax

/I assume g takes no arguments and returns an int

/I lambda(X)[X %plus% g[]] /I illegal: g[] doesn't parse

lambda(X)[X %plus% g[_ =*_]1 [/ _ *_ means "no argument here"
It's better to have an ugly solution than none at all.

2 Some C++ compilers, like g++, will provide a useful warnirigghostic (“left-hand-side of
comma expression has no effect”), alerting the user to tblel@m.

166

The if-then-else construct deserves discussion, as wadartiwree versionsfo
ifl ,andif2 .if0 is the typical version, and can be used in most instanceletiks
to make sure that its second and third arguments (the “thearidh and the “else”
branch) will have the same type when evaluated (and issuedpfuhcustom error
message if they won't). The other two ifs are used for diffityppe-inferencing issues
that come frometrec . In the factorial example at the end of Figure 2, for example,
the “else” branch is too difficult for FC++ to predict the typk owing to the recursive
call toF. This results inf0 generating an error. Thus we haf® andif2 to deal
with situations like thesafl works likeif0 , but just assumes the expression’s type
will be the same as the type of the “then” part, wheligas assumes the type is that of
the “else” part. In the factorial examplél is used, and thus the “then” branch (the
int valuel) is used to predict that the type of the while expression will bént .

Having three different ifs makes the lambda interface kelittore complicated, but
the alternatives seemed to be either (1) to dispose of custmnmessages diagnosing
if-then-elses whose branches had different types, or (&yite meta-programs to solve
the recursive type equations createddtyec to figure out its type within the library.
Option (1) is unattractive because the compiler-generateats from non-parallel if-
then-elses are hideous, and option (2) would greatly caagithe metaprogramming
in the library and slow down compile-times even more. Thushirg our design choice
is justified. Of course, in the vast majority of casé8, is sufficient and this whole
issue is moot; only code which usiesrec may needfl orif2

5.5 Naming the C++ types of lambda expressions

Expression templates often yield objects with complex typmes, and FC++ lambdas
are no different. For example, the C++ type of

/I assume: LambdaVar<l> X; LambdaVar<2> Y;
lambda(X,Y)[(3 %multiplies% X) %plus% Y]

IS

fepp::Full2<fcpp::fcpp_lambda::Lambda2<fcpp::fcpp_| ambda::exp::
Call<fcpp::fcpp_lambda::exp::Call<fcpp::fcpp_lambda exp:Value<
fcpp::Full2<fcpp::impl::XPlus> > fcpp::fcpp_lambda:: exp::CONS<
fcpp::fepp_lambda::exp::Call<fcpp::fcpp_lambda::exp ::Call<fcpp::
fcpp_lambda::exp::Value<fcpp::Full2<fcpp::impl::XMu ltiplies> >,
fcpp::fcpp_lambda::exp:: CONS<fcpp::fcpp_lambda::exp :Value<int>,
fcpp::fcpp_lambda::exp::NIL> > fcpp::fcpp_lambda::ex p::CONS«<fcpp
::fcpp_lambda::exp::LambdaVar<1>,fcpp::fcpp_lambda: :exp:NIL> >,
fcpp::fepp_lambda::exp::NIL> > fcpp::fcpp_lambda::ex p::CONS<fcpp
::fcpp_lambda::exp::LambdaVar<2>,fcpp::fcpp_lambda: :expiNIL> >1,2> >

In the vast majority of cases, the user never needs to nantypheof a lambda,
since usually the lambda is just being passed off to ano#meplate function. Occa-
sionally, however, you want to store a lambda in a temporariable or return it from
a function, and in these cases, you'll need to name its typethiese cases, we have de-
signed thd_.EType type computer, which provides a way to name the type of a lanbd
expression (LE). In the example above, the type of

167

lambda(X,Y)[(3 %multiplies% X) %plus% Y]
/I desugared: lambda(X,Y)[plus[multiplies[3][X] 1[Y]]

is

LEType< LAM< LV<1>, LV<2>,
CALL<CALL<PIlus,CALL<CALL<Multiplies,int>,LV<1> > > LV <2> > > >:Type

The general idea is that
LEType< Translated_LambdaExp >::Type

names the type dfambdaExp. Each of our primitive constructs in lambda has a cor-
responding translated version understood Bffype :

CALL [1 (function call)

LV LambdaVar
IFO,IF1,1F2 ifO[],if1[],if2[]

LAM lambda()[]

LET let[].in]

LETREC letrec[].in[]

BIND LambdaVar == value

With LEType, the task of naming the type of a lambda expression is stidromns,
but LEType at least makes it possible. Without thEType type computer, the type
of lambda expressions could only be named by examining linarlf implementation,
which may change from version to versidtEType guarantees a consistent interface

for naming the types of lambda expressions.
Finally, it should be noted that if the lambda only needs taubed monomorphi-
cally, it is far simpler (though potentially less efficie)just use an indirect functoid:

/I Can name the monomorphic "(int,int)->int" functoid type easily:
Fun2<intintint> f = lambda(X,Y)[(3 %multiplies% X) %plu s% Y

5.6 Comparison to other lambda libraries

Here we briefly compare our approach to implementing lambdéhat of the other
major lambda libraries for C++: the Boost Lambda Library (Bl5] and FACT![13]3

Boost Lambda Library Whereas FC++ takes the minimalist approach, BLL takes the
maximal approach. Practically every overloadable opeiatsupported within lambda
expressions, and the library has special lambda-expressiwstructs which mimic the
control constructs of C++ (like while loops, switches, gxien handling, etc). The
library also supports making references to variables, @heteffecting operators like
increment and assignment. Lambda is implicit rather thgrligk a reference to a
placeholder variables (likel) turns an expression into a lambda on-the-fly.

3 The FACT! library, like FC++, includes features other thambda, e.g. functions likaap()
andfoldl() as well as data structures for lazy evaluation. BLL, on theohand, is con-
cerned only with lambda.

168

BLL's approach makes sense given the “target audience”Btiest libraries are
designed for everyday C++ programmers. These are peoplarefamiliar with C++
constructs, and who are hopefully C++-savvy enough to avmist of the pitfalls of an
expression-template lambda library. In contrast, FC+e®Eghed to support functional
programming in the style of languages like Haskell. A nuntifesur users come from
other-language backgrounds, and aren’t too familiar withintricacies of C++. Thus
FC++’s lambda is designed to present a simple interface syitttax and constructs
familiar to functional programmers, and to shield useraf@++-complexities as much
as possible.

FACT! FACT!, like FC++, is designed to support pure functionalgraanming con-
structs. Lambda expressions always perform capture “hyevand the resulting func-
tions are typically effect-free. Like FC++, FACT! has an Bgiplambda construct; the
user can define his own names for placeholder variablesponeationally names like
x andy are used. FACT! defines few primitive control constructd¢siambda sublan-
guage (justvhere for if-then-else). Like BLL, however, FACT! overloads ma@y-+
operators (liket) for use in lambda expressions. Thus FACT!'s interface liatresly
simple and minimal, but lambda expressions are not as Wsdiakinctive as they are
in FC++.

6 Monads

Monads provide a useful way to structure programs in a puretfonal language. Using
monads, itis relatively straightforward to implement tjsrike global state, exceptions,
I/0, and other concepts common to impure languages thatthesvase difficult to
implement in pure functional languages|6, 14].

Supporting monads in FC++ is an interesting task for a nurobexasons:

— Many interesting functional programs and libraries use agsnmonad support in
FC++ makes it easier to port these libraries to C++.

— Monads in Haskell take advantage of some of that language& expressively
powerful syntax and constructs, includibgpe classesdo-notation andcompre-
hensionsModelling these in C++ helps us better understand theioelstiip be-
tween the expressive power of these languages.

— Monads provide a way to factor out some cross-cutting cors;ao that local pro-
gram changes can have global effects. (We discuss a few éxamplications that
illustrate this.)

In the next subsection, we give a short introduction to manadbgramming in
Haskell. Next we discuss the relationship betwbgre classes Haskell ancconcepts
in C++; understanding this relationship facilitates thecdission in the rest of this sec-
tion. Then we discuss how we have implemented monads in F@f+end with some
example applications of monads.

169

6.1 Introduction to monads in Haskell

We briefly introduce a small portion of the Haskell programgiianguagé,as its type
system provides perhaps the most succinct and transpaagnownderstand the details
of what a monad is. For the moment, know that a monad is a péatikind of data
type, which supports two operations (nametdt andbind) with certain signatures
that obey certain properties. We shall return to the degdiits a short digression with
Haskell.

In Haskell, the declaratiom :: T says that objeai has typ€el. Basic type names
(like Int) start with capital letters. Lowercase letters are usedréw type variables
(parametric polymorphism — e.g. templates). The synjbpl represents a list of
objects. The symbob separates function arguments and results. The symbstarts
a comment. Here are a few examples.

X 2oInt -- X is an integer

addl : Int -> Int -- addl is a function from Int to Int

-- plus takes two Ints and returns an Int

-- (Or, equivalently, plus takes one Int, and returns a funct ion

-- which takes an Int and returns an Int. Currying is built in.)
plus :: Int -> Int -> Int

- id takes any type of object and returns
-- an object of the same type
id sa->a

-- map is a polymorphic function of two arguments;

-- it takes a function from type a to type b, and a

- list of objects of type a, and returns a list of b objects
map (@ -> b) -> [a] -> [b]

Free type variables can be bounded by “type classes” (testshortly). For example,
a function to sort a list requires that the type of elementhénlist are comparable with
the less-than operator. In Haskell we would say:

sort :: (Ord a) => [a] -> [a]
Thatis,sort is a function which takes a list @f objects and returns a list afobjects,
subject to the constraint that the typds a member of th@©rd type class. Type class
Ord in Haskell represents those types which support orderiegators like

class Ord a where
== o a ->a -> Bool

< . a -> a -> Bool
<= & a ->a -> Bool
-- eftc.

4 Haskell programmers will note that we are fudging some oftkmils of Haskell to simplify
the discussion.

170

We say that a typ@ is aninstanceof type clas<C when the type supports the methods
in the type class. For example, it is true that

instance Ord Int -- Int is an instance of Ord

Given this overview of Haskell's types and type classes, avermow describe mon-
ads. A monad is a type class with two operations:

class Monad m where
bind :ma->(a->mb)->mb
unit :: a -> m a

In this case, instances of monads are not types, but rategiatie “type constructors”.

These are like template classes in C++; an example is ali€t+#std::list is not

a type, butstd::list<int> is. The same holds for Haske]l; is not a type, but

[Int] is. Inthe code describing the monad type class albmiga type constructor.
It turns out thatists are instances of monads:

instance Monad [] where
bind m k = concat (map k m) -- don’'t worry about these
unit x = [X] -- definitions yet

-- in the list monad

- bind :: [a] > (a -> [b]) -> [b]

- unit = a -> [a]

As another example, consider thybe type constructor. The typeMaybe a” rep-
resents a value which is either justaibject, or else nothing. In Haskell:

data Maybe a = Nothing | Just a

-- Examples of variables
X 1 Maybe Int
x = Just 3

y : Maybe Int
y = Nothing

Maybe also forms a monad with this definition:

instance Monad Maybe where

bind (Just x) k = k x -- don’t worry about
bind Nothing k = Nothing -- these definitions
unit x = Just X -- yet

-- in the Maybe monad
-- bind :: Maybe a -> (a -> Maybe b) -> Maybe b
- unit :: a -> Maybe a
A refinement of theMonad type class isMonadWithZero :
class (Monad m) => MonadWithZero m where
zero : m a

171

The zero element of a monad is a value which is in the monad regardieashat
type was passed to the monad type constructor. For listsertigty list (]) is the
zero . ForMaybe, thezero is Nothing . Not all monads have zeroes, which is why
MonadWithZero is a separate type class.

Monads with zeroes can be useccimmprehensionaith guards Comprehensions
are a special notation for expressing computations in a ohddaskell supports com-
prehensions for the list monad; an example is

[x+y | x <- [1,23], ¥y <- [2,3], X<y]
-- results in [3,4,5]

This list comprehension could be interpreted as “the listadfies x plus y, for all x and
y where x is selected from the list [1,2,3] and y is selectednfthe list [2,3], and where
x is less than y”. The desugared version of the Haskell cade is

- (\z -> z+1) is Haskell lambda syntax:
- (lambda(2)[Z %plus% 1])
- backquotes are Haskell's infix syntax:
- xTy=1Ffxy)
[1,2,3] ‘bind" (\x ->
[2,3] ‘bind* (\y ->
if not (x<y) then zero
else unit (x+y)))

The translation from the comprehension notation to the giesd code is straight-
forward. Starting from the vertical bar and going to the tjghe expressions of the
form “var <- exp ”turninto calls tobind and lambdas, and guards (boolean con-
ditions) are transformed into if-then-else expressiongwheturn the monadero if

the condition fails to hold. After all expressions to thehtigf the vertical bar have been
processed, the expression to the left of the vertical baruget called on it to lift the
final computed value back into the monad.

6.2 Haskell's type classes and C++ template concepts

In the C++ literature, we sometimes speak of temptateceptsA concept in C++ is
a set of constraints which a type is required to meet in o@éetused to instantiate a
template. For example, in the implementation of the tenedlatctionstd::find() ,
there will undoubtedly be some code along the lines of

if(cur_element == target) // ...

which compares two elements for equality using the equaligrator. Thus, in or-
der to callstd::find() to find a value in a container, the element type must be
EqualityComparable = —thatis, it must support the equality operator with the tigh
semantics. We caltqualityComparable a conceptand we say that types (such
asint) which meet the constraintaodelthe concept. Concepts exist only implicitly
in the C++ code (e.g. owing to the call tperator==() in the implementation),
and often exist explicitly in documentation of the libraBome C++ libraries[9, 10]
are devoted to “concept checking”, these libraries chedetthat the types used to

172

instantiate a template do indeed model the required cosdapt issue a useful error
message if not).

Haskell type classes are analogous to C++ concepts. HoweWaskell they are
reified; there are language constructs to define type clasgbtd declare which types
are instances of those type classes. In C++, when a cerfa@mtydels a certain con-
cept (by meeting all of the appropriate constaints), it isetyeghappenstance (structural
conformance); in Haskell, however, in addition to meetihg tonstraints of a type
class interface, a type must be declared to be an instanhe obhcept (named confor-
mance). “Concept checking” in Haskell is built into the laage: type classes define
concepts, instance declarations say which types modehvabiccepts, and type bounds
make explicit the constraints on any particular polymocghbnction.

Understanding this analogy will make the FC++ implementatf monads more
transparent. As we shall see, in the FC++ library, we speiltteiconcept requirements
on monads, in order to make it easier for clients who write attsto ensure that they
have provided all of the necessary functionality in the tiatgs.

6.3 Comparing monads in FC++ to those in Haskell

struct AUniqueTypeForNothing ;
AUniqueTypeForNothing NOTHING;

template <class T>
class Maybe
List<T> rep;
public:
typedef T ElementType;

Maybe(AUniqueTypeForNothing)
Maybe() /I Nothing constructor
Maybe(const T& x) : rep(cons(x,NIL)) // Just constructor

bool is_nothing() const return null(rep);
T value() const return head(rep);

struct XJust
template <class T>
struct Sig : public FunType<T,Maybe<T> > ;

template <class T>
typename Sig<T>::ResultType

operator()(const T& x) const
return Maybe<T>(x);

fypedef Fulll<XJust> Just;
Just just;

Fig. 3. TheMaybe datatype in FC++

173

Let us now illustrate monad definitions in FC++. As a first epgamwe shall look
atMaybe. TheMaybe template class and its associated entities are defineduimé=8
NOTHINGS the constant which represents an “emp#éybe, andjust() is a func-
toid which turns a value of typ@ into a “full” Maybe<T>. (Maybe is implemented
using aList which holds either one or zero elements.)

| *
concept Monad
/I full functoid with Sig unit :: a -> m a
typedef Unit;
static Unit unit;
/I full functoid with Sig bind : ma ->(a->mb)->mb
typedef Bind;
static Bind bind;

concept MonadWithZero models Monad
/Il zero :: m a
typedef Zero; /I a value type
static Zero zero;

*/

Fig. 4. Documentation of the monad concept requirements in FC++

Next we consider how to makeélaybe a monad. Figure 4 describes the general
monad concepts as specified in the FC++ documentation. A dndaas must define
the methodsunit andbind (with the appropriate signatures); a class representing
a monad with a zero must meet the above requirements as weé#fasng azero
element.

Figure 5 shows how we define tiMdaybe monad in FC++. Nested istruct
MaybeMwe defineunit , bind , andzero , as well astypedef s for their types.
This FC++ definition effectively corresponds to the deforis

instance Monad Maybe -- ...
instance MonadWithZero Maybe -- ...

in Haskell.

It should be noted here that the one major difference betweemads in FC++
and monads in Haskell is that, in FC++, there is a distinctietween the monad type
constructor (e.gMaybe) and the monad itself (e.¢laybeM. We chose to make this
distinction for reasons discussed next.

One advantage to separating the type construdaybe) from the monad defin-
ition (MaybeM) is that, since the monad definition is itself a data typeait be used
as a type parameter to template functions. As a result, rétthe supporting just list
comprehensions (like Haskell does), in FC++ we supponprehensions in an arbi-
trary monad by passing the monad as a template parameter to the comgieheror
example, the Haskell list comprehension

[x+y | x <- [1,2,3], ¥ <- [2,3], X<y]

174

struct MaybeM
typedef Just Unit;
static Unit unit;

struct XBind
template <class M, class K> struct Sig : public FunType<M,K,
typename RT<K,typename M::ElementType>::ResultType> ;
template <class M, class K>
typename Sig<M,K>::ResultType
operator()(const M& m, const K& k) const
if(m.is_nothing())
return NOTHING;
else
return k(m.value());

fypedef Full2<XBind> Bind;
static Bind bind;

typedef AUniqueTypeForNothing Zero;
static Zero zero;

Fig. 5. Definition of theMaybe monad MaybeM

is written in FC++ as

compM<ListM>()[X %plus% Y |
X <= list_with(1,2,3), Y <= list_with(2,3), guard][X %less% Y11

Note howListM is passed as an explicit template parameter tactmpMfunction,
which returns a comprehension for that monad. As a resultameanrite

compM<MaybeM>()[X %plus% Y | X <= just(2), Y<=just(3)]

and perform a comprehension in thiaybe monad. Having a name apart from the data
type constructor to serve as a handle for the monad defin@anListM , MaybeM
gives us a convenient way to parameterize monad operafibims.idea of generalizing
comprehensions to arbitrary monads was originally dissiiby Wadler[15].)

There is another advantage to separating the type cormtifuein the monad def-
inition. Haskell type classes require algebraic data tygestructors (not type aliases)
to work. As a result, we cannot express the identity monadqaad wheren a = @)
directly in Haskell. Instead we have to fake it by defining avrtata type (which we
have chosen to caltlentity):

data Identity a = Ident a
instance Monad Identity where -- m a = Identity a
unit x = X
bind m k = k m
where values of typa are wrapped/unwrapped with the value construtdent to
make them members of the typentity a . In FC++, however, we can define the

175

monad without also having to define a new data type to reprédemtities, as seen in
Figure 6. The reason for the distinction is perhaps obvidaskell uses type inference,
which means it must unambiguously be able to figure out whicmad a particular
data type is in. This type inference is not possible unleseetls a one-to-one mapping
between algebraic datatype constructors and monads. Ia F@the other hand, the
user passes the monad explicitly as a template parametenstracts likecompM By
requiring the user to be a little more explicit about the gjpee gain a bit of expressive
freedom (e.g. being able to do comprehensions in arbitranyads).

/I Nothing corresponding to Identity data type needed by Has kell
struct IdentityM /I M a=a

typedef Id Unit;

static Unit unit;

struct XBind
template <class M, class K> struct Sig : public
FunType<M,K, typename RT<K,M>::ResultType> ;
template <class M, class K>
typename Sig<M,K>::ResultType
operator()(const M& m, const K& k) const
return k(m);

typedef Full2<XBind> Bind:
static Bind bind;

Fig. 6. Definition of theldentityM monad

6.4 Monads in FC++

The previous subsection introduced FC++ monads. Here wi &ias exactly what
monad support FC++ provides.
FC++ provides functoids for the main monad operations. fipalty:

unitM<SomeMonad>() // SomeMonad’s "unit" functoid
bindM<SomeMonad>() // SomeMonad’s "bind" functoid
zeroM<SomeMonad>() // SomeMonad’s "zero" value
plusM<SomeMonad>() // SomeMonad’s "plus" functoid
bindM_<SomeMonad>() // SomeMonad’s "bind_" functoid
mapM<SomeMonad>() // SomeMonad’s "map" functoid
joinM<SomeMonad>() // SomeMonad’s "join" functoid

litM<SomeMonad>() // lifts a one-arg function into SomeMo nad
liftM2<SomeMonad>() // lifts a two-arg function into SomeM onad
liftM3<SomeMonad>() // lifts a three-arg function into Som eMonad
bind /I "bind" (monad is inferred)

bind_ /I "bind_" (monad is inferred)

Many of these have not been previously mention#dsM is another function sup-
ported by some monadsindM_ , mapMjoinM , and theiftM functions are com-

176

mon monad operations which are defined in termargfM andbindM ; bind and
bind_ are described more below.
FC++ supports comprehensions in arbitrary monads, usagé¢heral syntax:

compM<SomeMonad>()[lambdaExp | thing, thing, ... thing]
wherething is one of

— a gets expression of the fornbV <= lambdaExp " (Translates into a call to
bind)

— alambda expression (Translates into a cabitadl_)

— a guard expression of the formgtiard[boolLambdaExp] " (Translates into an
if-then-else withzero if the test fails)

This is similar to the syntax used by Haskell’s list comprediens. FC++ also supports
a construct similar to Haskelldo-notation

doM[thing, thing, ... thing]

where eachthing is as before, onlyguard s are no longer allowed. (The lack of a
monad parameter oM is discussed shortly.)

Clients can define monads by creating monad classes whickliimmonad con-
cepts described in the previous subsectibloifad and MonadWithZero). There
is also aMonadWithPlus concept for monads which suppatus . Additionally
there is another concept calléaferrableMonad , which may be modelled when
there is a one-to-one correspondence between a datatyperandad. In the case of
InferrableMonad s, FC++ (like Haskell) can automatically infer the monadduhs
on the datatype in some cases; constructsdikeé and the functoidbind andbind_
do not need to have a monad passed an an explicit parame®y-nfhr it automati-
cally.

The monad syntax is part of FC++’s lambda sublanguage. As liihbda , we
strived for minimalism when implementing monads. The ordwroperator overloads
areoperator] andoperator<= , and the only new syntax primitives acempM
guard , anddoM. As with the rest olambda , we provideLEType translations so
that clients can name the result type of lambda expressibidwse monads:

DOM doM[]

GETS LambdaVar <= value
GUARD guard(]

COMP compM<SomeMonad>()[]

As with the other portions ofambda , FC++ provides some custom error messages
for common abuses of the monad constructs. We followed time shesign principles
discussed in Section 5 when implementing monads in FC++.

6.5 Monad examples

There are many example applications which use monads; fedéseuss a small sam-

ple to give a feel for what monads are useful for.

177

Using MaybeM for exceptions One classic example of the utility of monads comes
from the domain of exception handling. Suppose we haveemrifome code which
computes some values using some functions:

x = f(3);
y = g(x);
z = h(x,y);
return Z,

(For the sake of argument, let’s say that the functiong, andh take positive integers
as arguments and return positive integers as results.) Nppose that each of the
functions above may fail for some reason. In a language witlegtions, we could

throw exceptions in the case of failure. However in a languaghout an exception

mechanism (like C or Haskell), we would typically be forcedépresent failure using
some sentinel valueX , say), and then change the client code to

x = f(3);
ifl x == -1) {
return -1;
} else {
y = 9(x);
if(y ==-1){
return -1,
} else {
z = h(xy);
return z;
}
}

This is painful because the “exception handling” part of ¢bee clutters up the main
line code. However, we can solve the problem much more silyplysing the Maybe
monad. Let the functions return values of tydaybe<int> , and IetNOTHINGrep-
resent failure. Now the client code can be written as just

compM<MaybeM>()[Z | X <= f[3],
Y <= g[X],
Z <= h[X,Y]]

The definitions ofunit andbind in the MaybeMmonad make the problem trivial;
NOTHINGvalues immediately propogate up through the end of the cehgmsion,
whereas integers continue on through the computation azdes

Using ListM for non-determinism Now imagine changing the problem above
slightly; instead of the function§, g, andh having the possibility of failure, sup-
pose instead that they are non-deterministic. That is,@sg@pach function returns not
a single integer, but rather a list of all possible integesutes. Changing the original
client code to deal with this change would likely be evenergian the original change
(which required all the tests fofl). However the change to the monadic version is
trivial:

compM<ListM>()[Z | X <= f[3], -- Note ListM instead of MaybeM
Y <= g[X],
Z <= h[X,Y]]

178

The resultis a list of all the possible integer valuesZarhich satistfy the formulae.

A monadic evaluator Wadler [15] demonstrates the utility of monads in the contex
of writing an expression evaluator. Wadler gives an exangplan interpreter for a
tiny expression language, and shows how adding variousskifdunctionality, such
as error handling, counting the number of reduction opanatperformed, keeping an
execution trace, etc. takes a bit of work. The evaluatores tlewritten using monads,
and the various additions are revisited. In the monadideershe changes necessary
to effect each of the additions are much smaller and moré thaa the changes to the
original (non-monadic) program. This example demonssrtite value of using monads
to structure programs in order to localize the changes sacg$o make a wide variety
of additions throughout a program.

Monadic parser combinators Parsing is a domain which is especially well-suited to
monads. In the Haskell community, “monadic parser combiisdtare becoming the
standard way to structure parsing libraries. As it turns patsers can be expressed as
a monad: a typical representation type for parser monads is

Parser a = String -> Maybe (a, String) -- the monad "Parser"
That is, a parser is a function which takeStaing and returns

— (if the parse succeeds) a pair containing the result of theepand the remaining
(yet unparsed$ptring , or
— (if the parse failsNothing

Monadic parsecombinatorsare functions which combine parsers to yield new parsers,
typically in ways commonly found in the domain of parsing amdmmars. For exam-
ple, the parser combinatarany:

many : Parser a -> Parser [a]

implements Kleene star—for example, given a parser whicbgseaa single digit called
“digit ", the parser fnany digit " parses any number of digits. Monadic parser
combinator libraries typically provide a number of basicgeas (e.gcharP , which
parses any character and returns that character) and catoisir{e.gplusP , which
takes two parsers and returns a new parser which tries te pastring with the first
parser, but if that fails, uses the second) to clients. Ttatyeof the monadic parser
combinator approach is that it is easy for clients to defirdr tbwn parsers and com-
binators for their specific needs. A good introductory papethe topic of monadic
parser combinators in Haskell is [3]; we implement the exasim that paper in one
of the example files that comes with the FC++ library.

As we have seen in the previous examples, using monads ofigagnit easy to
change some fundamental aspect of the behavior of the prodrar example, if we
have an ambiguous grammar (one for which some strings aduaiiipte parses), we
can simply change the representation type for the parsesbk

Parser a = String -> [(a, String)]
-- uses List instead of Maybe

179

and redefine the monad operationsif , bind , zero , andplus), and then parsers
will return a list of every possible parse of the string. Tigiall possible without making
any changes to existing client code.

One alternative approach to writing parsing libraries in+Gs that taken by the
Boost Spirit Library[1]. Spirit uses expression templatesurn C++ into ayacc -like
tool, where parsers can be expressed using syntax similae fanguage grammar. For
example, given the expression language

factor = integer | group /I BNF
term = factor (mulOp factor) *
expression = term (addOp term) *

group = '(" expression ')

one can write a parser using Spirit as

factor = integer | group; Il Spirit (C++)
term = factor >> *(mulOp >> factor);

expression = term >> *(addOp >> term);

group = '(" >> expression >>)

which is almost just as readable as the grammar. kdee , Spirit has a way to asso-
ciate semantic actions with each rule.

The results are similar with monadic parser combinatorgigJan FC++ monadic
parser combinator library, we can write

factor = lambda(S)[(integer %plusP% dereference[&group])SI;
term = factor “chainll”™ mulOp;

expression = term “chainll”™ addOp;

group = bracket(charP((), expression, charP()));

to express the same parser. The above FC++ code creates fpaiteids by using
more primitive parsers and combining them with appropneteser combinators like
chainll . (Note that, whereas Spirit's parser rules are effectively reference”,
FC++ functoids are “by value”, which means we need to exibficreate indirection to
break the recursion among these functoids. Hence the lsebfla , dereference
and the address-of operator.) This FC++ parser not onlyepate string, but it also
evaluates the arithmetic expression parsed. The semangitsiilt into the user-defined
combinators likeaddOp andchainll . For example,

addOp :: Parser (Int -> Int -> Int)
parses a symbol like’ and returns the corresponding functamdiigus). Then,

chainll :: Parser a -> Parser (a -> a -> a) -> Parser a
- e.g. p ‘chainll’ op

parses repeated applications of papseseparated by applications of paregr(whose
result is a left-assocative function, which is used to comalihe results from the
parsers). Thus monadic parser combinator libraries alloe/to express parsers at a
level of abstraction comparable to tools likacc or the Spirit library, but in a way in
which users can define their own abstractions (tikainl1) for parsing and seman-
tics, rather than just using the builtin ones (like Kleera)ssupplied by the tool/library.

180

Lazy evaluation Previous versions of FC++ supported lazy evaluation in tvanm
ways: first, via the lazy.ist class and the functions (likmap) that uselList s, and
second, via “thunks” (zero argument functoids, Iken0<T>). Monads provide a new,
more general mechanism to lazify computations. The dagaByiNeed<T> and its
associated mondslyNeedMcan be used to make a computation lazy. Additionally, the
functoidbLift lazifies a functoid by lifting its result into the ByNeedM mamh For
example, we can lazify

x = f(3);

y = 9(x);
z = h(xy);
by writing

compM<ByNeedM>()[Z | X <= bLift[f] [3],
Y <= bLiftfg] [X],
Z <= bLift[h] [X,Y]]

The resultis 8yNeed<int> value, which is a computation that will result in et

when “forced” by callingoForce . (Conversely, a constant can be turned into a by-need
computation by callingpDelay .) Using values of typ&yNeed<T> in lieu of typeT
ensures that lazy evaluation occurs: a computation is mboqpeed until the value is
demanded, and once a computation has been run to produeesathe value is cached
so that further applications d&fForce get the cached value rather than re-running the
computation.

In short, the datatyp®8yNeed<T> combines “thunks” with caching, and the
ByNeedMmonad makes syntax sugar like comprehensions availabhasolient code
working with ByNeed<T> objects need not be concerned with all the “forcing” and
“delaying” in the midst of the computation (the monad pluntbhandles this).

Summary The examples given in this section give a sense of the kindpplications
for which monads are useful. Monads have a wide variety 6fiesi, which span varied
domains (such as parsing and lists) and a number of crosagcabncerns (like lazy
evaluation and exception handling). Prior versions of F@wplemented a few small
monads, but they were extremely burdensome to express.xpnessiveness afforded
by the new FC++ syntactic sugar (like lambda and comprebagsmakes using mon-
ads in C++ a practicality for the first time.

7 Conclusions

We have given an overview of FC++ and described its new featinrdetail. Full func-
toids provide a general and reusable mechanism for addiigres such as curryability,
infix syntax, and lambda-awareness to every functoid. Tt sublanguage is de-
signed to minimize the problems common to all expressiomptate lambda libraries
in C++. We have discussed the relationship between Haskalldlasses and C++ tem-
plate concepts in order to help describe how monads can bhessqd in FC++. We
have demonstrated a novel syntax for comprehensions whitérglizes this construct

181

to an arbitrary monad. Throughout FC++ and the lambda sgbkge, we have over-
loaded a select few operators to provide syntactic sugdh&library and we have used
named functoids likplus to express the actual operations of C++ operators.

182

Bibliography

[1] de Guzman, Joel, et al. The Boost Spirit Library. Avaiat
http://www.boost.org/libs/spirit/index.html

[2] Haskell 98 Language Repo#vailable online at
http://www.haskell.org/onlinereport/

[3] Hutton Graham and Meijer Erik. “Monadic parsing in Halkkelournal of Func-
tional Programming8(4):437-444, Cambridge University Press, July 1998.

[4] ISO/IEC 14882: Programming Languages — CHANSI, 1998.

[5] Jarvi, Jaakko and Powell, Gary. The Boost Lambda LiarAvailable at
http://boost.org/libs/lambda/doc/index.html

[6] Jones, Simon Peyton and Wadler, Philip. “Imperativectional programming,”
20th Symposium on Principles of Programming Languagé&XM Press, Char-
lotte, North Carolina, January 1993.

[71 McNamara, Brian and Smaragdakis, Yannis. “FC++: Fuoral Programming in
C++", Proc. International Conference on Functional Programm{i@FP), Mon-
treal, Canada, September 2000.

[8] McNamara, Brian and Smaragdakis, Yannis. “FunctiorralgPamming with the
FC++ library” Journal of Functional Programmindo appeatr.

[9] McNamara, Brian and Smaragdakis, Yannis. “Static fiaiggs in C++"Workshop
on C++ Template Programmin@ctober 2000, Erfurt, Germany. Available at
http://www.oonumerics.org/tmpwO00/

[10] Siek, Jeremy and Lumsdaine, Andrew. “Concept CheckBigding Parametric
Polymorphism in C++Workshop on C++ Template Programmixtober 2000,
Erfurt, Germany. Available dittp://www.oonumerics.org/tmpwO00/

[11] Y. Smaragdakis and B. McNamara, “FC++: Functional $dol Object-Oriented
Tasks”Software Practice and Experienokugust 2002.

[12] A. Stepanov and M. Lee, “The Standard Template Librat@95. Incorporated in
ANSI/ISO Committee C++ Standard.

[13] Striegnitz, Jorg. “FACT! The Functional Side of C+#Available at
http://www.fz-juelich.de/zam/FACT

[14] Wadler, Philip. “Comprehending monad®athematical Structures in Computer
ScienceSpecial issue of selected papers from 6th Conference gnand Func-
tional Programming, 2:461-493, 1992.

[15] Wadler, Philip. “Monads for functional programmingl.” Jeuring and E. Meijer,
editors,Advanced Functional Programmingpringer Verlag, LNCS 925, 1995.

183

184

Importing alternative paradigms into modern
object-oriented languages.

Andrey V. Stolyarov

Moscow State Lomonosov University,
dept. of Computational Math. and Cybernetics,
MGU, Il uch. korp., komn.747, Leninskie Gory,

Moscow, 119899, Russia

Abstract. The paper is devoted to the problem of importing alternapiaea-
digms into an imperative object-orented environment. &dJaown solutions
of the problem are discussed with explanation of their demkb. Then a new
solution is introduced.

The solution is based on the fact that programming paradiapwsloped within
alternative languages such as Lisp, Prolog, Refal etcndeet independent from
their respective languages (e.qg., from their syntax). Ed¢hese languages im-
plements a certain algebra, which in fact creates the pgradilt is possible to
represent such an algebra with object-oriented techniqdegat the respective
set of paradigms within the primary language. Together wjythtactic capabil-
ities of the primary language (such as overloading of stahdaythmetic op-
eration symbols) this results in possibility for a prograemto use alternative
paradigms (such as Lisp programming) right within the primanguage (C++
or Ada95). No changes to the primary language is needed sribrequired to
apply any additional preprocessing to the code; only thedstal translator of the
primary language is used. The only thing needed to use thaiegd approach
is an appropriate library.

As an illustration, the paper describes a C++ class librarped InteLib which
currently has a practically usable implementation for Lpspgramming, and ex-
perimental umplementations of Refal and a subset of Prolog.

Introduction

Different programming languages encourage a programmaséodifferent ways to
imagine the program being developed, the environment (el operating system,
user etc) and their interaction. The simplest way is to imagi computer either as
such (processor, memory, i/o ports etc) or a some kind ofi@innachine capable to
perform certain set of operations, and a program as a segudrnastructions those
explicitly specify what operations are to be performed.siuay of thinking is known

as "imperative programming”.
Another technique, proposed in early 1960s [10], is to regmethe program as a

set of functions. Each function gets zero or more argumerdscamputes a result. A
function may use other functions in computations, inclgdirsing itself, directly or
indirectly (so called recursive function calls). No sidéefs are allowed, that is, if all

185

the arguments are known, one can replace a function callitigthesult and get the
same program. This is known as "pure functional programfififig

Several years later, "logic programming” [12] was proposedbgic programming,
the program is thought as a set of logic facts (axioms) useelstostatements and find
objects that satisfy the given conditions. Pure logic paogming also disallows side
effects.

Obviously, both pure functional and pure logic programmang not suitable for
interactive programs because interactive program chatsgesvironment at least read-
ing from the input and writing to the output so it’s requireditave functions with side
effects to create an interactive program. In contrast viidisé two styles, the technique
of object-oriented programming appeared in the middle $9@0ks like being cre-
ated specially for interactive software development. Tiegmm and its environment
are represented with so-called "objects” — abstract "bla@kes” capable to exchange
messages and perform various actions in response to a redg%ag

The notion of gprogramming paradigns often used to refer to a particular system
of programming abstractions. It is important to notice ttheg notion of a program-
ming paradigm is significantly unformal. There is no welladdished classification of
programming paradigms though there were many attemptéoogie (e.g., [13]). For
example, the languages Lisp[15], Refal[17], Miranda[1&}l &lope[7] are all usually
taken as functional languages. However, they in fact hagitecommon than in differ-
ences. E.g., a Refal function is based on text matching appéatterns and transform-
ing in accordance to the rule for the pattern first matcheer&h no such capability
in Lisp. This makes it more convenient to perform lexical aydtactic analyses with
Refal than with Lisp. Hope and Miranda are pure functionaglaages while Lisp has
global variables and local lexical bindings changeablesdaeffect of a function, etc.

Nowadays the union of imperative and object-oriented pgraslis the most popu-
lar in the software industry. The union is implemented byhslanguages as C++ [16],
Ada95, Java, Delphi, Object Pascal etc.

Using different languages together within a single projeatls to different serious
problems so it is rare practice; most projects are singlgtage, and the langage is one
of these imperative object-oriented languages listed @dovmost cases it is inconve-
nient to implement a whole project in Lisp, Refal or PrologisTin fact results in that
these languages are rarely used at all despite that theyximeenely suitable for some
subtasks in almost any project.

2 Example of a project suitable for multiparadigm technique

As noted in [6], "We may encounter application domains whieln be modeled best
with only one paradigm. But there may be other domains whaoh lee represented
more adequately using multiple paradigms”. Furthermarajinost any large software
project there are subtasks for which alternative paradigmasuitable.

Consider we have a database with complicated relationsitiifinits components,
and a user who needs a good interface to the database, pigfel@se to a natural
language. First of all, we have to analyse the queries upestyt his console (lexical

186

analysis). Then we need to determine what do they mean ¢sgngdysis). Finally, we
need to create and perform a query to the database and rstuesllts to the user.

It takes significant time to write a lexical analyser in an argtive language such
as C++. If we do it in Refal, however, the work’s complexitguees by tens of times.

Next, we need to do some more processing to prepare the dMershould deter-
mine what formulae do mean and probably perform some tramsftions, optimiza-
tions etc. It is hard to operate with symbolic formulae in Citit in Lisp all the sym-
bolic transformations are programmed simply.

Now we are ready to request and retrieve a result from thddaéa It's not a prob-
lem when the query is simple; for instance, if we've got a Hase storing personal
data of some people, a request like "Give me a home phone muwhB®b Johnson”
after lexical analysis and syntax transformations is nabdlem to perform. However,
the user might ask for a thing much harder to calculate. Famgte: "Find me a fe-
male who has graduated in 1997 in the Moscow State Univeasitycomputer science
person, then got married in 1998 with a male who speaks fluegligh and is older
than his wife by 3 years”. It is possible to create a databzesestores all the necessary
data, but a request like this might force us to write a wholegpam to complete it.
Please note that we know the conditions and the only probdetm find the solution
which satisfies them all. Logic languages such as Prologlbgietc. are suitable for
this purpose [5].

It looks like a good idea to make data flow such as shown at fig. 1

User '—» Refal — Lisp — Prolog

Fig. 1. Simple idea of data flow between parts implemented in diffel@nguages

However, the diagram at fig. 1 does not represent all the ilmmelity of the hypotet-
ical system. First, it must interact with a user, possibyainetwork. Second, it should
control the database, which is probably to be used by mamg sgaultaneously. That
leads to many technological problems (e.g., locking) toddeesl by the system. In ad-
dition, we should not forget that the data is stored on play¢ibat is,real) disks, so we
need to monitor the file system, check whether there’s sefftmount of free space,
do some caching to increase performance etc.

Languages such as Refal, Prolog and Lisp are not good to tleeak things. Their
features are far from the real equipment capabilities. Tdreynot so efficient as C++
and other "universal” imperative languages. For an aréfiritelligence tasks such as
the one described below, it is possible to trade efficiencthefsoftware for develop-
ment speed increase, but in a system task envolved to nrathi@idata storage it is
inacceptable to loose in efficiency.

187

Besides that, interaction with a user in modern systemsnegjgraphical interface
(GUI), which is usually created as an event-driven systéisiticonvenient to create an
event-driven system with an artificial intelligence langeaObject-oriented languages
such as SmallTalk[8], C++ or Java are much more suitablehferpurpose.

The diagram at fig. 2 is closer to practice. We assume thatr’Wderface” and
"Database Management System” are created with languaiaklsufor these purposes,
probably C and C++. So we have C++ as a primary language apdRislog and Refal
as secondary languages.

User Interface(C + +)

Refal — Lisp — Prolog

i

Data Database management system (C')

Fig. 2. Data flow closer to reality

However, when someone tries to use such an idea in a reatprsie finds out it
is much harder to implement such a system than to create eadiagf we try to use an
alternative language for a particular (small) subtask argd project, we getinto a trou-
ble with integration of language tools that have so totaiffedent nature (for instance,
strictly typed imperative language as the primary langumye a typeless functional
language as the secondary language). There are problenadling conventions, in
sharing global data, in using heaps etc.

Furthermore, even the fact of using two or more differentgpaonming systems
within one project makes the project harder to manage. lfodtiee programmers does
not know one of the used programming systems, she could @etitrouble trying to
build the project, to fix someone else’s code etc. The difficaf managing a project
which uses two or more programming systems is so serioughtsateason alone is
able to prevent senior developers from making decisionsioigudifferent languages.

3 Different ways towards multiparadigm environment creation
It is obvious that an ability of using different paradigmgéther is attractive. There are

certain difficulties though that prevent programmers froying multiparadigm pro-
gramming.

188

Before we introduce the new idea which hopefully allows toidwmost of the trou-
bles, let us discuss some possible (and well-known) wayseation of a multiparadigm
environment.

We'll try to understand why each of them didn’t become as Widesed as it is
necessary to satisfy the need in multiparadigm programmiihgs will allow us to
specify what do we actually want from the new technique.

3.1 Creation of another programming language

There were many attempts to create a new programming laegoaghe purpose of
multiparadigm programming (e.g., Leda[3], Oz[11] etchefe is an unexpected trou-
ble however. It is expensive to develop a new language. Etisnore expensive to bring
the newly-developed language to the level of an industriadipct so that it can be used
in real software engineering practice, because this regtirsupport the language with
useful software tools (compilers, debuggers etc.), asagib create sufficient amount
of documentation, tutorials and write and publish lots ofk& But the real trouble is
then to wait and see that the software engineering commadoign’t tend to use the
language in spite of all its advantages.

It is somewhat magfowhen the community turns towards a new language, and this
is a very rare kind of event, probably because the commusiitya conservative In fact
it has to be. Really, starting to use a new technology regtireeeducate the personnel
and change habitual methods of working. Both are very expenshile outcome of
changing languages is not so clear, specially to managerswatke decisions.

This is why we decide not to try to create another languagen &y extending an
existing one. Enough of them are created already but tharddeelp.

3.2 A package of differently implemented programs

There are as well a few approaches to solve the problems fefetit programming
languages integration within a single project. The sinpiésa is just to write sev-
eral programs, each in its own language, and make them pdgate using operating
system’s capabilities.

This kind of solution avoids problems with calling and dadawentions, linking in-
compatibilities etc. It doesn’t help tough with problemausing different programming
systems within a single project.

Besides that, interoperation organization produces its prblems depending on
a particular technology.

Using Unix stylé, when every program of the package has standard streams of in
put and output and the interoperation is done with commanguages, we have to

1 E.g., community preferred to use C++ with all its drawbacksieva similar but better-looking
and carefully developed language Ada is in fact forgotten

2 There’s nothing bad though in this conservatism. Evergtinppens too fast in Computer
Science so if the industry wasn't so conservative, we'd lething actually done.

% Unix style is mentioned as a multiparadigm environment ig,, §14]

189

convert all the data somehow into a text representationtfaanalyse the represen-
tation in another program of the package. Another drawbadkat it is not always
convenient to use the standard input/output streams ferdperation with another part
of the package.

There are some attempts to make another, more conveniempfmgrammer stan-
dard way to organize interoperation of different prograsagh as CORBA and COM.
However, such technologies theyselves are complicatedgimso that making a pro-
gram to support them could be comparable in difficulty witlvsw the task the pro-
gram is actually written for, and they are best handled witject-orientred languages,
producing troubles with functional or logic languages.

3.3 Embedded interpreters

Another solution is to build an interpreter of a secondanglsage into the primary
language. In the simplest case the interpreter is impleadeas a module, which has
an appropriate interface. The main program (e.g., writbe@-++) feeds the interpreter
with the text of a module created in the secondary language (8sp), then passes the
initial data, runs the interpreter and reads the resultk.bac

One of more advanced techniques is known as 'embeddanceedboguage into
another. In this case the primary language is enlarged withescertain constructs
which allow to insert constructs of a secondary language @ntode in the primary
language. In this case we need a preprocessor which handlzsdeance constructs
and produces a plain code in the primary language which is¢benpiled in a regular
way. In fact such a preprocessor replaces a foreign constitlt some code which
converts all necessary variables into a text, creates appate query and then passes
it to an interpreter, and then converts the received resuttegessary. This technique
is successfully applied to the case of writing databaseatjper software using SQL-
based database management system.

Such a solution, though, has many disadvantages:

— The solution does not allow us to call primary language fiomst from within the
interpreted code. Only primary language functions cantbalkecondary language
code, but not vice versa.

— The secondary language code is fully interpreted. Thatl&nithe program runs,
every call to the interpreted language is given in its tepr@sentation. The em-
bedded interpreter has to perform lexical and syntactityaaa "on-the-fly” which
may lead to efficiency losses.

— "The last but not least” — the results of the interpreted coaléing are also pre-
sented in text form, so we need to analyse it in the main progdaist remember
that analysing of strings is one of the tasks we want to avoid++ code and per-
form with an artificial intelligence language, preferablgf®, and you'll realize
that something is wrong.

Besides that, mixing up interpreted and compiled executidhin one program
doesn't look like a fair solution anyway. It is clear that wantt avoid interpretation
completely for such languages as Lisp or Prolog, but at ilsastould expect there will
be no lexical and syntactic analyses at runtime.

190

3.4 Extendable interpreters

The opposite solution is to choose an interpreted langusigfeegprimary one and pro-
vide mechanisms to extend the interpreter with functionsémented in another lan-
guage (usually the language in which the interpreter igaibjtimplemented). One of
the well-known examples is Tcl. Its interpreter allows ttl €acode which is compiled
into a shared library following certain simple calling cemtions.

The main drawback of this method is that the primary languagst be interpreted
which may be inappropriate in some cases.

3.5 Cross-language linkage

Having certain amount of patience, it is possible to comaiid link modules written
in different languages together. As it was mentioned befitnie produces numerous
problems with differences in calling conventions, datarespntation conventions etc.
Furthermore, it almost always requires to make changesetexisting programming
systems (for example, to reimplement compilers so that¢oeyd produce compatible
object modules). As of practice, all these hardships arfécgarit to prevent program-
mers from trying multiparadigm programming. And, anywayg @don’t reach real in-
tegration of languages this way because the languagesthiegsare not designed for
multilanguage environment (e.g., there’s a problem howatbacC function from Lisp
code — how taspecifysuch a call using Lisp syntax).

3.6 Compilation from one language into another

The difficulties of linking together modules implementedtivo defferent languages
can be reduced if one of the languages is first compiled ird@ther.

Many of Scheme translators actually produce C code whichttoam be compiled
in usual manner. Thus there’s no problem to link such a codle sadme modules im-
plemented in C and/or C++.

We still don’t know how to specify a C function call in Schenyatax, that is, only
Scheme functions can be called from C, but not vice-versan Ahe programmer needs
to understand the internal data structures of the partiéGoiplementation of Scheme
in order to compose a call to a Scheme function and/or andheseesults. This is
inappropriate because internal data structures are ysu@livell-documented.

3.7 Paradigms without a language

There’s also a chance to brainstorm why do we actually wanséanother language
for a particular subtask, that is, what features does it la@rimary language doesn’t
provide, and then just implement them (e.g., as a library).

Consider we use C++ as the primary language and we for sorserreee feel it
useful to have heterogenous Ifstss we do in Lisp. It is possible to implement them
with C++ template classes. First, we create a base clasfiwhjements the common

4 Each element of the list may have its own type

191

behaviour of all items of such a list (e.g., a pointer to thetiitem, a pure virtual func-
tion which returns the size of this object etc.) Having tHass, we define a template
child of it. The template gets the type of the stored valuésagarameter. Each item of
such a list would be an instance of the template. Using C+#imantype identification
(RTTI) we can tell one type of an item from another when theidi©iandled.

Practice shows however this doesodmpletelysatisfy the programmers’ needs.
Each language grows a special environment where new tagbsand methods appear,
and these methods usually base on more than one paradigmasheterogenous lists).
If we remember Lisp working on a C++ project, we probably watop with Lisp lists
alone. Once we implemented the lists, the next thing we nrigled is Lisp mapping
functions, or Lisp destructive list changing and garbadkection, and so on.

3.8 Summary

Now let's summarize what conditions do we want to meet witlew solution. We need
a framework for multiparadigm programming which

1. allows to use one of the languages widely accepted by thestry as itis, i.e. with
no changes to the existing compilers and other tools;

2. delivers additional paradigms as they exist in the choa#ternative language, all
(or almost all) together;

3. doesn't place any limitations over interparadigm fumectcalls and sharing data
between different code;

4. doesn't require lexical and syntactic analyses of antspdrthe code at runtime.

In the next chapter we introduce a technique which comphesabove require-
ments. It is discussed assuming C++ is the primary languade.&sp is the language
we need to import the set of paradigms from.

4 The key idea

In order to explain the idea of a new technique, let’s diseusat do we actually need
from the secondary language (e.g., Lisp). Do we, for examq#ed its syntax? Per-
haps we don’t. Generally speakinge need the paradigms developed around the
language, not the language itself

Lisp language implements a kind of algebra on so called $esspns. Both pro-
gram and data are built of S-expressions. The basic opesatio S-expressions are:

— composition (allows to make a list or an arbitrary binaretoé S-expressions)

— decomposition (retriving elements of a list or a tree)

— evaluation (allows to treat an S-expression as a code aridrpethe according
operations)

— lambda (allows to build an S-expression of a functional fgoecalled closure, with
a given list of formal parameters and a list representinduhetion’s body)

192

Special type of S-expression callggimbolin the terminology tradition to Common
Lisp [15]) oridentifier (in the Scheme’s terminology [9]) has additional operatien
assigning a value, binding a value and assigning a fundtioreal dialects of Lisp this
set is wider, but we'll limit to these 3 operations.

Besides that, there are additional basic operations @haperations which require
one to know the internal representation of S-expressiomsder to implement such
an operation). Some of them are necessary to make the algedia (e.g. arythmetic
operations on numberic S-expressions), while others &aded for the user’s conve-
nience.

The mentioned operations create an algebra on the spacexgir8ssions. We will
denote the introduced algebra®slgebra

It is clear that S-algebra being implemented in any pariculay will give us the
full set of Lisp paradigms. S-algebra may be implementetlout an actual Lisp inter-
preter. All we need is to keep it useful, that is, provide avament instrumental basis
to operate S-expressions and apply all the necessary mper.at

In some languages (including C++ and Ada) it is possible terload standard
operations such as -,/ etc. This allows to implement an arbitrary algebra usingver
natural and convenient syntax. For example, one can impleanmathematical notion
of a vector using- for vector addition; for vector difference operation,for the scalar
multiplication and (for instancé) for vector multiplication.

In the same manner we can implement the notion of S-expressth a class (or,
more precisely, with a polymorphic hierarchy of classeg) mvent a certain set of
operations so as to implement the whole S-algebra presantasp.

5 Representation of S-algebra with C++

In this section the architecture and design of a C++ clasarjbnamed InteLib [1] is
explained as an illustration of the proposed idea.

5.1 S-expressions of various types

The notion of S-expression is represented with an absttass avhich for historical
reasons is called LTerm. In Lisp, there are S-expressioniffefent types (numberic
constants, string constants, symbols, dotted pairs, ifumatt objects/closures etc.) A
polymorphic inheritance technique is used to represefareifid types of S-expressions.
The LTerm hierarchy is shown at fig. 3.

In the discussed version of the library th€erm class’ children serve to represent
various types of S-expressions:

— LTerminteger andLTermFloat represent numberic constants;

— LTermString represents string constants;

— LTermLabel isintroduced to represent S-expressions whose role irygters is
determined by the particular instance of the object (suc®amsmon Lisp symbols,
as well agft and#f in Scheme);

— LTermSymbol represents Lisp symbols;

193

LTerm
—> LTermlinteger

LTermFloat

LTermString
LClassicAtom

— LTermLabel
LTermSymbol

LDotPair

LForm

LCFunction

... Lisp functions written in C++

— LLispForm

LLambda
LNLambda
— LMacro
... Special forms

— LTermStream
LHashTable
LPackage

Fig. 3. LTerm classes hierarchy intended to represent S-expresefovarious types

— LDotPair represents dotted pairs which Lisp lists are built of;

— LForm represents generic functional S-expression such asilfuaction, user-
defined function or lexical closure, Lisp macro etc.

— several additional classes to represent miscellaneousésssuch as hash table, i/o
stream etc.

InteLib supports two types of numberic constants, nametggers and floats.
Compile-time options of the library allows to choose whatieric types we ac-
tually need. It is possible to causderminteger to useshort ,int , long or
long long type to store the actual value, as welllaGermFloat can be tuned to
usefloat , double orlong double form of a floating point number.

194

Strings are implemented assuming a string constant itseiéver changed. In con-
trast with Common Lisp, there is no vector type of S-expa@ssi the discussed model
S0 a string is considered as just an atomic value.

There is no special type of S-expression for single charscidey are represented
with anLTermString object as a string which has length of 1.

Lisp symbols are implemented with clds§ermSymbol . The class is capable to
hold a reference to an object which represents the currerardic value of the symbol
and to another object which represents the function aseakisith the symbol. Stuff
related to lexical bindings of a symbol is implemented aléshe class but is supported
with its methods (those related to setting and getting theeya

The notion of an empty list may be implemented by any obje&-ekpression; the
only condition is that the address of the object is knownatthmpile time because the
end-of-list check is performed just by comparing pointeisually an object of the class
LTermSymbol (for dialects close to Common Lisp) or LTermLabel (for Scleelike
dialects) are used for this purpose.

To represent functionals as dat&orm subhierarchy has been developed within
theLTerm hierarchy. The subhierarchy ha€Function andLLispForm classes
derived directly fromLForm. Lisp special forms are also represented with classes de-
scended directly frohForm.

The LCFunction class represents functions implemented in C++, includlhg a
"built-in” functions such asCAR CDR CONSetc. To add a new Lisp function to the
library, a programmer needs to declare a childlGFunction with only one method
(DoCall) overriden in order to implement the necessary functidyali

The LLispForm class is intended to represent forms defined with Lisp con-
structions (lambda functions, nlambda functions and ngctbhas references to the
lambda-list (the list of formal parameters), the functiardip and the lexical context
of the form.LLispForm class has child classes corresponding to different kinds of
forms:

— LLambda (ordinary Lisp function which evaluates all its argumemtd ¢hen eval-
uates the body in its own context);

— LMacro (Lisp macro evaluated as in Common Lisp);

— LNLambda (Lisp function which does not evaluate its arguments).

5.2 Garbage collection

Some ofLTerm’s children are large so that it is inefficient to pass them &lye. How-
ever, sometimes these objects are constructed within didumnghich may be called for
the value as well as for its side effect so that it is no goocetarn the created object
by pointer (if the function is called for the side effect théwe constructed object goes
to garbage).

In order to provide garbage collection, another classéda/Reference) is pro-
vided. It has precisely the same size as a pointer do so tisahdt so bad to pass it
by value. An object of. Reference class acts just like a pointer to &fferm object

® The notion of lexical context is implemented with a sepaciass LLexicalContext

195

Table 1. Examples of Lisp expressions representation with C++ cootst

C++ constructs Lisp equivalent
(L] 25, 36, 49) (25 36 49)
(L] "I am the walrus", 1965) ("I am the walrus" 1965)

(L] 1, 2, (L] 3, 4), 5, 6) (12 (@3 4 56)

L] (Ll 12, 2), 3, 4) (1 2) 3 4
(L] MEMBER, 1, "(L] 1, 3, 5)) (member 1 '(1 3 5))

(L] APPEND, ~(L] 10, 20), “(L] 30, 40)) (append (10 20) (30 40))

L1 2 1.2
(L 1, 2, 3) 4 @a23.4

having necessary operations includingnd-> . LReference is intended to be the
primary interface to the library. It has a lot of construstarhich allow to construct an
S-expression from a value of any base C++ data type (intefi@ass, strings etc).

In most cases, the objects bferm class hierarchy reside in dynamic memory
and are not operated directly (altough it is possidl®eference objects are used to
handleLTerms .

Besides other featuresReference notifies the pointed object when another
pointer to it is created or an existing pointer is no longenpog to it (e.g., it is assigned
with another value or destructed)lerm class performs simple reference counting and
deletes the object once it has zero references.

Reference counting is choosen for its simplicity. It haslswabwn problems (in-
cluding the problem of cyclic constructions). If it is inappriate for a particular appli-
cation to use reference counting, then any of existing C+bage collection libraries
can be used instead. The library has a compile-time optiewttch off the reference
counting code.

5.3 Lexical bindings

There are also additional classes that represent (inivadltLisp terminology) a notion
of lexical context. Objects of these classes are not optateiser in most cases. The
library does not, however, hide them from the user becauserime cases it might be
useful to create a context manually. There’s always ongealgkical context (possibly
special null context). In order to use a context it must bevaietd. Then it is affected
by operation of binding a value to a symbol. The context fitaffects operations of
assignment and retrieving a value of a symbol.

5.4 List composition operations

In Lisp there’s an operation of constructing a list of an @ewy length denoted by
parentheses. The operation has variable 'arity’. For eXxamonstrucfl 2 3) has

3 arguments and builds a list of 3 items - 1, 2 and 3. Besides tiare’s a binary
operation which builds a dotted pair, such(as. 2) . The construc{l 2 3) has

the same effect as a superposition of 3 dotted pair conetydike this:

196

123 = (@.@.@3.NL)

We can implement an operation similar to the Lisp’s) and it will allow us to
build any list of S-expressions. It is though a bit inconeentito create lists using this
operation only (imagine you couldn’t use plain lists in Ligmly dotted pairs).

Another problem is that one might want to use just a C++ consba expres-
sion without explicit cast of it to an S-expression, e.g., ‘Bbt a construct like
LReference(3) ,soin case of an overloaded standard operation we needstiblea
of operands already of LReference type, which allow a C++gitanto understand we
mean the overloaded operation, not a standard one. Thigeatgnt also prevents us
from using C++ functions with unspecified number of arguradsgcause there’s no
way to determine at run time what types of actual parametersedhave.

The problemis solved replacing the Lisp ‘()’ operation ofahitrary list composi-
tion with two operations. First of them creates a list of olearent, while second adds
an element to a given list. It is clear the two operationsmalio create an arbitrary list,
that is, their combination has the same functionality ad thp ‘()’ operation.

The first operation always has exactly one argument, but wk ese a symbol of
any standard unary operation for it because we want it to picale to an expression
of any standard type. We also don’t want to use a plain fundtiothis purpose because
parentheses would make our constructs less clear. Thegpnablsolved with a class
LListConstructor ,Which s created to be a label for a binary operation to slinaw t
compiler to apply an overloaded one instead of the builtgaration. Usually there’s
only one instance dfListConstructor namedL. For example, an operatb{3
returns arLReference object that represents Lisp constr{@} .

For appending a new item to a list we can overload any ovesgloladinary operator.
For a better clarity we decide to use C++ commpgfér this purpose. Left-hand operand
of a comma is always an LReference representing a list. Codesizuctively changes
the list replacing the finaNIL with a dotted pair ofX . NIL) whereXis its right-
hand operand casted to BReference . This makes it possible to represent Lisp lists
in C++ as shown in table 1.

There’s a supplementary unary operation in most of Lispedialwhich allows to
construct a list of two elements, first of which is a sym@&JOTEwhile the second is
the operation’s operand. The operation is usually denoteddingle quote symbol {.
InteLib overloads the operatdr(tilde) for this purpose. See table 1 for an exarfiple

For composing dotted pairs and dotted lists InteLib offersoperation|| . The
left-side operand must be a list (possibly of one elememig. dperand appearing at the
right side of the operator is converted to LReference anal tine operation replaces the
lastNIL of the given list with whatever it constructed from the rigide operand. See
table 1 for an example.

Note the parentheses in the last example. They appear leciteusomma operator
has lower precedence thfin.

5 The operator is oveloaded for LReference class so it is plesg apply it to a list or a Lisp
symbol, but one can't use it with strings or numberic contstalt is unnecessary anyway to
quote them since they always evaluate to themselves

197

5.5 Operations implemented as regular methods

The most important operation on S-expressions iseff@uationof an S-expression.
Evaluation is an unary function which maps frafp\ S, to S, whereS, is a space
of all possible S-expressions afg, is a set of 'unevaluable’ S-expressions (such as
closures). Performing evaluation of an S-expression onatsm get a side effect.

All constants evaluate to themselves with no side effecisaliles evaluate to their
values, if any. Evaluation of an unbound variable gener@tesrror.

Evaluation of a list interpretes the first element as an ucsion what functional
object to apply to the rest of the list as a list of parametersnost cases, the resting
elements of the list are evaluated and the appropriateiumistapplied to a list built of
the results. The first element of the list must be either a ®avhich has an associated
functional object or a Lambda-list.

Itlooks like we need to implement two operations in orderuport the evaluation:
the evaluation itself (as a polymorphic method of thieerm class) and an operation
of applicationof a functional S-expression (a one that belong&form subhierar-
chy) to a list of parameters. The two operations are impléeteas methods called
‘Evaluate ’and ‘Call ’, respectively. TheCall * method generates an error when
called for an object of a non-functional typdevaluate ' generates an error when
it is impossible to evaluate the given S-expression. [BiSelfEvaluated method
allows to determine whether the object represents a cantstanalways evaluates to
itself.

Besides that, there are metho@atr’ and ‘Cdr’ in LTerm class. They return the
respective cells of a dotted pair when called forladotPair object. For an object
that represents empty list both methods return empty lialir@ these methods for a
non-list object will cause an error.

Another important method namelextRepresentation allows to create a
human-readable representation of any given S-expression.

It is well known that there are 3 different predicates of digyan Lisp, calledEQ
EQLandEQUAL EQpredicate is the simplest one, it just compares two addseS&8-
is a bit more flexible. Two objects may be not the same whileesgnting the same
value (e.g. two instances of an integer constant 2). In calerake it possible to im-
plementEQL predicate for any.Term object there’s a virtual methdspecificEq|
which returns false by default. ImplementatiorE®pLchecks for equality of addresses
first, and only if the objects are nBQ it calls SpecificEq| for one of them passing
the other as an argument, so that it doesn’t cause a misheinavienSpecificEq|
returns false when the compating objects are the samestteual in the sence &Q

Another important operation, Lambda, is implemented by astwoctor of
LLambda class. For example, expression

LReference(new LLambda(NULL, (L| A),
(L] (L] PLUS, A, 1))

creates a closure witdULL lexical context. The closure takes a numberic S-expression
and returns a number which is greater by one. In Lisp suchsumowould be repre-
sented aglambda (a) (plus a 1)) . In order to create a real closure that has

198

lexically bound variables, the appropriate lexical cohtexist be passes as the first
argument of thé Lambda constructor.

There are other methods in classes of the library which aigeovmostly for user’s
convenience. They include typecasting operations, whlickvao convert a constant
S-expression into a base C++ value. For example,

LReference(3)->GetInteger();
will return 3, while
LReference("Hello world")->GetString();

will return a pointer to a constant stririglello world" . Calling such a method for
a wrong type of S-expression causes an error.

5.6 Operations performed by standard Lisp functions

Standard, or built-in, functions play a key role in Lisp ftinoality providing a basis
for building programs. They can also be thought as operatiorS-expressions, that is,
as elements of S-algebra.

In Lisp there are symbols that initially have associatedtfifunctions. InteLib
doesn’t provide such symbols in order to allow a user to usatever names she wants
for these symbols. The functional objects representind-kvewn Lisp functions are
direct children ofLCFunction class (for functions that evaluate all arguments) or of
LForm class (for special forms). They usually have names sudlFaactionCar
LFunctionCons , LFunctionLet ,LFunctionDefun and so on.

For convenience there is a generic class

template<class F> class LFunctionalSymbol

whose argument must be a class that represents a partioalztion. An instance of
LFunctionalSymbol differs from LSymbol in that its constructor creates an ob-
ject of the given finctional class and lets it be the assodifitection of the symbol. For
example, one might want to add the following declaratiorh®sgrogram:

LFunctionalSymbol<LFunctionCar> CAR("CAR");
LFunctionalSymbol<LFunctionCdr> CDR("CDR");
LFunctionalSymbol<LFunctionCons> CONS("CONS");
LFunctionalSymbol<LFunctionCond> COND("COND");
LFunctionalSymbol<LFunctionDefun> DEFUN("DEFUN");

etc. As usual, the constructor's argument sets the texarakrof the symbol which is
used byTextRepresentation method.
Consider, for example, the following Lisp code:

(defun isomorphic (treel tree2)

(cond ((atom treel) (atom tree2))
((atom tree2) NIL)
(t (and (isomorphic (car treel)

199

(car tree2))
(isomorphic (cdr treel)
(cdr tree2))))))

One can write the module shown at fig. 4 to do the same thing in CThe module

1 File isomorph.cpp
#include "intelib.h"
LSymbol ISOMORPHIC("ISOMORPHIC");
void Lisplnit_isomorphic() {
static LSymbol TREEL("TREEL");
static LSymbol TREE2("TREE2");
static LFunctionalSymbol<LFunctionDefun> DEFUN("DEFUN ");
static LFunctionalSymbol<LFunctionCond> COND("COND");
static LFunctionalSymbol<LFunctionAtom> ATOM("ATOM");
static LFunctionalSymbol<LFunctionAnd> AND("AND");
static LFunctionalSymbol<LFunctionCar> CAR("CAR");
static LFunctionalSymbol<LFunctionCdr> CDR("CDR");
(L|DEFUN, ISOMORPHIC, (L|TREE1, TREEZ2),
(L|COND,
(L|(LIATOM, TREE1), (LJATOM, TREEZ2)),
(L|(LJATOM, TREEZ2), NIL),
(L|T, (LJAND,
(LIISOMORPHIC, (L|CAR, TREE1), (L|CAR, TREE2)),
(LIISOMORPHIC, (L|CDR, TREEL), (L|ICDR, TREE2)))))).Eval uate();

Il end of file

Fig. 4. Example of a C++ module that defines a function in a mannersg Li

compiles with an ordinary C++ compiler without any addigbpreprocessing. The
symbollISOMORPHIds public and can therefore be used in other modules.

Please note there are no definitions of symidasidNIL . They are provided by the
library as well as symbolQUOTENdALAMBDAThe library needs symbols NIL and
QUOTHbecause itis possible to obtain them from certain operatidtihout mentioning
them in a program. Consider the following example:

(eql 1 2) -> nil
(eql 1 1) > t
(car "a) -> quote

The symboLAMBDAan't be obtained in such a way, but it has special meaniraydeg
less of it's possible value and/or associated function, sdave to rely on the symbol
itself (that is, for example, on the object’s address). Bhahy these 4 symbols are
provided by the library in contrast with all the other welidwwn symbols.

Itis important to understand that there’s no Lisp as suchérG++ module shown at
the fig. 4. The module is written in C++ language. The compiteows nothing about

200

special meaning of all these commas and vertical bars; treepandled as functions
just like in any program which overloads standard operafidras we can say we made
no changes to the primary language, at the same time alloavipggrammer to use
paradigms from another (secondary) language. Only paredige imported from Lisp,
not the language itself. In other words, waport S-algebra which brings us the
paradigms of Lisp without Lisp language as such.

6 Translation from Lisp to C++

The primary goal of the InteLib library is to bring Lisp paiguhs to C++. However, as
a side effect it opens a clear way to translation of Lisp codie C++. The translator is
made which uses simple rules of transformation of the codsid®s that, the translator
generates the necessary definitions of symbols and perfeoms other tasks as to
allow using several Lisp modules within a single projechc®ithe translator is not the
main goal of the project, we don’t explain it in details inglpiaper; we only give a short
description.

The translator takes one or more Lisp files and proudces a Gadula (that is,

a "source” file and a header file). The translator understanziytain set of so-called
translation directives (top level forms beginning with &en %%Y% which allow to
control how names are translated etc.

The character set for C++ identifiers differs from the triadial one for Lisp sym-
bols. C++ identifiers are case-sensitive and can consisttef$, digits and the under-
line symbol. The first character of identifier must be a lattehe underline, not a digit.
Lisp symbols are case insensitive and may be built of lettBgits and various symols
such ast, -, *, , %etc. so we need a certain translation algorythm.

The fact that Lisp symbols are case sensitive and C++ idergtifire not is very
helpful in translation of names from Lisp to C++. This allousto bring all letters in
a Lisp symbol to the upper case and leave the lower-caseslétteepresent all these
pluses, dashes and other symbols that are not allowed in d&rntifiers. For instance,
the Lisp symbotead-char might be represented &EADdashCHARIf a symbol’'s
name begins from a digit (which is illegal in C++), we prependith a lowercase
letter, for instance -d”. The symbol7seas having been translated this way becomes
the identifierd7SEAS

There are some exceptions from the general rules. For exarig Lisp symbol
null would be translated tBlULL producing a name conflict with some of the stan-
dard header files. That's why it is translatedidb/LL (as specified by an appropriate
translation directive). User can add her own exceptiorissretc.

As to experience, using of the translator is good when a whadule is inple-
mented in Lisp because the traditional Lisp syntax is mores/enient than the intro-
duced C++ implementation of S-algebra. It is still possiblewvever, to avoid using the
translator.

The dialect of Lisp recognized by the translator was namtzllh Lisp. It is a very
short and simple dialect designed keeping in mind that ib ise used as a secondary
language. It ommits many features of modern Lisp dialeatsibee they are considered
not to be essential.

201

7 Logic programming

The explained technique can be applied to secondary laegusger than Lisp. One of
the obvious ways of further developmentis to apply it to ofithe logic programming
languages.

As of now, an attempt is done to apply the technique to a vestyictive subset of
Prolog[4]. The Prolog part of the library, unlike the Lisprpdnas primarily a demon-
stration value; creating a library useful in real programgnpractice is the subject of
further work.

The implemented subset of Prolog has no dynamic data stascflists and func-
tors), just like in Datalog[5]. Unlike Datalog, the implented dialect has theut oper-
ation.

Prolog machines operate on data which is similar to S-espas (in fact, the only
difference is functors). Creating a model of a Prolog maehindecision was made to
reuse the classes already implemented to represent Liap dat

To represent the notion giredicate DIAbstractPredicate class is invented.
It has a pure abstract method nani2i€reateAbstractlterator which is in-
tended to create an iterator to fetch, one by one, solutibagven predicate provided
with the appropriate number of arguments.

To create atoms of given predicate (e.g., having predfeglter , create the atom
father(john, X)), the class providesperator() for 0, 1, 2,..., 10 arguments
of the type LReferenée

Another class, derived from DIAbstractPredicate and named
DIPredicate , represents the predicate which is the part of Prolog progra
(thatis, a predicate formed of clauses of goals).

Prolog atoms (constructs such fasher(john, mary) , vertex(X) , etc.)

are represented with thBIAtom class which is in fact just a pair of a predicate
and an argument list. Atoms are usually created within fonst locally, so another
smart pointer is necessary. It is namBtAtomRef . This smart pointer is used as
the primary interface to thBIAtom class. One of the most important operations of
DIAtomRef is operator<<=() which is used instead of the well-known Prolog
symbol:- . The operator adds another clause to the appropriate ptediad returns a
reference to the object of the cld38 redicate::DIClause . That object, in turn,
hasoperator,() to add goals (atoms) to it.

Prolog variables are represented using cl2iS&riable

Using all these classes and operations, we can represepitdlog clause

grandfather(X, Y) :- father(X, Zz), father(z, Y).
with C++ expression
grandfather(X, Y) <<= father(X, Z), father(Z, Y);
" So the dialect in fact can handle lists, but it still treatsnthas atomic data values, e.g., when
doing unification

8 There is no operator with variable parameters list, bechBference objects, being objects
of a class, can't be passed throughin C++.

202

whereX, Y andZ are objects of the clad3lVariable . Facts such as
father(john, george).
are represented using another form of the operater:

father(john, george) <<= true;

Prolog code example:

father(john, george).

father(george, alex).

father(alex, alan).

father(alan, poul).

grandfather(X, Y) :- father(X, Z), father(Z, Y).

Equal C++ code:

#include "il_dlog.h"
LSymbol john("john"), george("george"),
alex("alex"), alan("alan"), poul("poul");

DIVariable X("X"), Y("Y"), Z("Z");

DIPredicate father, grandfather;

void Prologlnit_father_grandfather() {
father(john, george) <<= true;
father(george, alex) <<= true;
father(alex, alan) <<= true;
father(alan, poul) <<= true;
grandfather(X, Y) <<= father(X, Z), father(Z, Y);

Fig. 5. Prolog-like C++ code example

Fig. 5 shows an example of a Prolog-like C++ code which usesptiedicates
father andgrandfather . Now, the code

iter = grandfather(X, Y).Createlterator();
bool rc;
do {

PDISubstitution solution;

rc = iter->NextSolution(solution);

if (rc) {
printf("%s\n", solution->TextRepresentation().c_str(
}
} while (rc);

will print the following solutions list:

203

B

{Xljohn Y/alex}
{X/george Y/alan}
{X/alex Y/poul}

As we already noted before, the implemented model doesniindccation of dy-
namic data structures though Lisp lists can be operated wétisidering them atomic
datums. To produce a more interesting demo, let's add a-ibuptredicate named
DLCONS(car, cdr, cons) . The predicate is implemented by another class de-
rived from DIAbstractPredicate , hamedDIPredicateCons . The predicate
is able to work having any of its arguments specified or unifipddthat is, a variable
is given instead of a value).

Another useful predicate BIPredicateLispcall (to call the Lisp machine
explained before).

The objectDICut is a special value dDIAtomRef which represents the cut op-
erator.

Note also that ®IPredicate without any clauses always fails, so to implement
analways failinggoal we can just create an em@Predicate

Having all these objects, we are ready to write a simple iogwhich finds a path
in a given graph (fig. 6).

Now, if we create the appropriate iterator with

iter = Shortpath(2, 4, X, 2).Createlterator();
the solution finding code like the one shown above will prirg solution
X2 1 4)}

Unlike the Lisp part of InteLib which is already useful in serpractical cases,
the explained Prolog part is only a simple demo. It is planteeinplement a more
practically useful library in the close future.

8 Conclusions

The most important advantage of the proposed techniquatisttére’s no need for two
programming systems within a project. The existing C++ cibenfs always used, and
the only thing required to use the technique is a C++ clasariwhich has a relatively
simple imterface.

Itis also possible to use another primary language. Theregjyirement to it is the
possibility of overloading of standard operations. In jgaitar, Ada95 may be used as
the primary language as well (at least for modelling Lispresgecondary language).
Implementation of the appropriate library for Ada95 migktdne of the further work
goals.

204

LListConstructor L;

DIPredicateCons DLCONS;

DIPredicateLispcall DLLISPCALL,;

DIAbstractPredicatelterator * jter;

DIVariable X("X");

DIVariable Y("Y");

DlVariable z("2");

DIVariable P("P");

DIVariable N("N");

DIVariable V1("V1");

DIVariable V2("V2");

DIVariable V3("V3");

DIPredicate Edge("Edge");

DIPredicate Edge2("Edge2");

DIPredicate Member("Member");

DIPredicate Shortpath("Shortpath");

DIPredicate Fail("Fail");

Member(X, Y) <<= DLCONS(X, V2, Y);

Member(X, Y) <<= DLCONS(V1, V2, Y), Member(X, V2);

Edge(1, 2) <<= true;

Edge(l, 3) <<= true;

Edge(1, 4) <<= true;

Edge(l, 5) <<= true;

Edge(5, 3) <<= true;

Edge2(X, Y) <<= Edge(X, Y);

Edge2(X, Y) <<= Edge(Y, X);

Shortpath(X, Y, P, 1) <<=
DICut,
Edge2(X, Y),
DLCONS(Y, L, V1),
DLCONS(X, V1, P);

Shortpath(X, Y, P, N) <<=
DLLISPCALL((L|It, N, 1), T),
DICut,
Fail();

Shortpath(X, Y, P, N) <<=
DLLISPCALL((L|minus, N, 1), V1),
Shortpath(Z, Y, V2, V1),
Edge2(X, 2),
DLCONS(X, V2, P);

Fig. 6. Graph path finding program

205

Bibliography

[1] E. Bolshakova and A. Stolyarov. Building functional tedques into an object-
oriented system. liKnowledge-Based Software Engineering. Proceedings of the
4th JCKBSE volume 62 offFrontiers in Artificial Intelligence and Applications
pages 101-106, Brno, Czech Republic, September 2000. |&S Fxmsterdam.

[2] G. Booch. Object-oriented Analyses and DesigrAddison-Wesley, Reading,
Massachusets, second edition, 1994,

[3] T. A. Budd. Multy-Paradigm Programming in LEDAAddison-Wesley, Reading,
Massachusets, 1995.

[4] A. Calmerauer, H. Kanoui, and M. van Caneghem. Prologgbahéoriques et
développements actuelkechnique et Science Informatique@t):271-311, 1983.

[5] S. Ceri, G. Gottlob, and L. Tank&.ogic Programming and DatabaseSpringer-
Verlag, Berlin, 1990.

[6] U. W. Eisenecker. Future trends in multi-paradigm peogming. Position Paper
for the ECOOP’98 Panel on Multi-Paradigm Programming, 1998

[7] A. J. Field and P. G. Harrisorzunctional ProgrammingAddison-Wesley, Read-
ing, Massachusets, 1998.

[8] A. Goldberg and D. Robsorgmalltalk-80: The Language and its Implementation
Addison-Wesley, Reading, Massachusets, 1983.

[9] R. Kelsey, W. Clinger, and J. Rees. Revisadport on Algorithmic Language
Scheme, 1998.

[10] J. McCarthy. Recursive functions of symbolic expreasiand their computation
by machine.Communications of the ACN3:184—195, 1960.

[11] M. Muller, T. Muller, and P. Van Roy. Multiparadigm @gramming in Oz. In
D. Smith, O. Ridoux, and P. Van Roy, edito¥§prkshop on the Future of Logic
Programming International Logic Programming Symposium, 1995.

[12] J. Robinson. Logic programming - past, present andréutiNew Generation
Computing1:107-121, 1983.

[13] D. Spinellis, S. Drossoupoulou, and S. Eisenbach. Luagg and architecture
paradigms as object classes: A unified approach towardgaretigm program-
ming. In J. Gutknecht, editoRrogramming Languages and System Architec-
tures International Conferenceolume 782 ofLecture Notes in Computer Sci-
ence pages 191-207, Zurich, Switzerland, March 1994. Sprivgelag.

[14] D. D. Spinellis.Programming paradigms as object classes: a structuringhmec
nism for multiparadigm programmindPhD thesis, University of London, London
SW7 2BZ, United Kingdom, February 1994.

[15] G. L. Steele.Common Lisp the LanguagPigital Press, second edition, 1990.

[16] B. Stroustrup. The C++ Programming Language Addison-Wesley, Reading,
Massachusets, third edition, 1997.

[17] V. Turchin. REFAL-5, Programming Guide and Reference Manixdw England
Publishing Co., Holyoke, 1989.

[18] D. A. Turner. Miranda — a non-strict functional langeagith polymorphic types.
In J. P. Jouannaud, editétroceedings of the Conference of Functional Program-

206

ming Languages and Computer Architectuvelume 201 ofLecture Notes in
Computer Scienc@ages 1-16, Nancy, France, 1985. Springer-Verlag.

207

208

Program Templates:
Expression Templates Applied to Program Evaluation

Francis Maes

EPITA Research and Development Laboratory,
14-16 rue \Voltaire, F-94276 Le Kremlin-Bicétre cedex, riag,
francis.maes@lIrde.epita.fr
WWW home pagehttp://Irde.epita.fr/

Abstract. The C++ language provides a two-layer execution modelicstat

ecution of meta-programs and dynamic execution of regulgrograms. The
Expression Templates technique takes advantage of thisedaaution model
through the construction of C++ types expressing simpléaetic formulas.
Our intent is to extend this technique to a whole programniémguage. The
Tiger language is a small, imperative language with typesiables, arrays,
records, flow control structures and nested functions. Tisé dtep is to show
how to express a Tiger program as a C++ type. The second stegros op-
erational analysis which is done through the use of metgrpros. Finally an
implementation of our Tiger evaluator is proposed.

Our technique goes much deeper than the Expression Templaée It shows
how the generative power of C++ meta-programming can be usedder to
compile abstract syntax trees of a fully featured programgnfanguage.

1 Introduction

During the compilation process, an input program expregséextual form is trans-
formed by successive steps into executable code. As in aiguége, a C++ program
will basically be evaluated during its execution. The ieting particularity of C++ is
its ability to do some computations at compile-time usingpé&te constructions (the
so-called meta-programs, see [12], [3], [7] and appendirrfah example). This two-
layer execution model corresponds to the usual conceptatit compile-time) and
dynamic (execution-time) processing.

In C++, there is a technique called Expression Templatesritbesi by [11], which
allows the exploitation of this two-layer execution mod€his technique relies on
transformations of simple arithmetic expressions at cterjpne to increase the per-
formances of the executable code. Moreover some evaluediome done entirely sta-
tically with mechanisms such as constant propagation. Whaig some computations
usually done at execution-time are processed at compile-ti

The Expression Templates technique is based on the use pfatentlasses. In
order to work on expressions, we need a structural desmmnigii them. This is done
by building a type that reflects the abstract syntax tree ()A8The expression. Each
node of this tree will be translated into a template classseharguments are the node
subtrees.

209

Usually, a program written in any language can also be egpteas an abstract syn-
tax tree. The next natural step is to wonder whether it isiptesto extend the Expres-
sion Templates technique to a whole programming languag®essing a full program
with a C++ type reflecting its AST could thus be made possiloiéhe remainder of
this paper, this type will be called the TAT (Tree As Type). ATTis a representation of
an AST using a C++ type formalism.

Expressing a program in the TAT formalism would allow us tagidthe Expression
Templates evaluation method to a whole program and theréfotake advantage of
the two-layer execution model of C++ (see [5]). The entirecess of compiling and
executing a program expressed as a TAT corresponds to ltsatica.

To experiment this idea, we have to choose a programmingiggthat does not
have this two-layer execution model. We want this languadastsimple and to have
few constructions. Nevertheless, this language must at Iralude types, functions,
records, arrays and flow control constructions. Tiger, glage defined by [1], cor-
responds to our needs: with only 40 rules in its EBNF gramihagspects all our
conditions.

This work is a proof of concept. No-one had previously mapgeeéntire language
to a C++ meta-program. Those that consider C++ expressippléges for prototype
implementations should be interested in this project. Moee, the C++ metalanguage
is here introduced as an intermediate language. This pbinew is different from the
current trend of supporting meta-programming by desigmimegalanguages as exten-
sions of existing programming languages. Our work iniiaispired by Expression
Templates goes very deeply into the possibilities of C++aapgbgrams using several
techniques discovered recently.

This paper begins with an overview of related work. Nexttisec3 introduces
the Tiger language, followed by a description of our ardiiee. Our first objective is
to translate Tiger programs into TATs. When trying to do ,tkmsveral problems arise
(e.g. expressing lists). These are developed in sectioruds€tond objective is to do
some static processing on this TAT. This will require a stte called environment,
and a form of static pointers detailed in section 5. Finallywant to evaluate a Tiger
program expressed as a TAT using the C++ two-layer execatmael. The implemen-
tation which allows this is described in section 6. This ikoflwed by some interesting
results related to this new technique. This paper will finigth a discussion about the
possibilities of such mechanisms.

2 Related work

Our work is based on Expression Template. The ExpressiomplBtenis at the basis of
our work. This technique described by [11] has many knoweradts. In particular it
allows to build the static AST of a C++ expression. This aBd@#+ meta-programs to
work on C++ expressions seen as types. This can be useful for:

— Rewriting statements into equivalent (but more efficient)ones This was the
original intent of Expression Templates. This techniqus ¥t used to evaluate
vector and matrix expressions in a single pass, without tearjes.

210

— Building lambda terms. Several libraries for doing functionnal programming in
C++ are based on Expression Templates. Thanks to C++ metggmns, several
functionnal operations are possible on these lambda terhresFact library ([9])
provides typical functional features such as currying ddmexpressions and lazy
evaluation in C++. The Boost package also includes a lilspegialized in lambda
expressions: the Boost Lambda Library ([6]). FC++ ([8]) isimilar library in-
spired by the Haskell language. Our work has something toittolambda term
manipulations: we also manipulate TATs. But our intent istoao functionnal op-
erations on a TAT but to compile a whole program includingcfions and variables
declarations.

— Building any other structured expressionssuch as the [4] library which uses Ex-
pression Template in order to build EBNF rules. C++ metegpams are then used
to transform a grammar into a usable parser. In this libi@ry meta-programs
deal with complex operations such as in our work.

The Expression Template is very useful but a bit complex @ément. PETE ([2])
is a tool that aims at generating the needed code. Fact isdwuibp of PETE. This
tool could help us to build a C++ front-end to our compilereTitiea of using template
constructions in compilers has already been used for Ingjldijava compiler, see [10].

3 Tiger evaluation and compilation

3.1 Tiger constructions

Tiger is an Algol-style language with a functional flavor. @kinds of construction
exist: declarations and typed expressions. Declarati@nsfahree kinds: type, variable
and function declarations. Four basic types exist: int®ggrings, nil and void. New
types can be built with records and arrays. Existing typeshearenamed by a typedef
mechanism. Tiger is not a first-order functionnal languégections cannot be passed
as parameters, neither as results.

Tiger has a nestelét -in -end construction which makes it possible to declare
nested scopes. A particular case of this is the ability tdedemested functions.

Except declarations, everything in Tiger is an expresditerals (strings and in-
tegers), unary and binary operations, left-values, famctalls, array and record in-
stantiations and flow control constructioifs:-then -else ,while -do,for -to -do,
break .

3.2 Architecture

We use a front-end program which parses Tiger and does thansienanalysis: type
checking, scopes and bindings. The output of this frontieradl C++ program which
declares a TAT. Our front-end is based on techniques exgdiy [1].

The interesting thing is the remaining work: the programieation. This task is
done in C++ through the static and the dynamic processing.

Our front-end associated with the C++ static processor isnapdation chain. In-
deed the input of this chain is a textual Tiger program, as@ittput is an executable
program.

211

3.3 Comparison with a standard compiler

A usual object oriented compiler first parses the programprdvides AST classes that
are dynamically instantiated in order to build the prograistract tree. At this point
until the end of the compilation, successive transfornmestire applied until getting the
executable code.

In our case, we provide a set of template classes correspptaleach node of the
AST. During the compilation of a Tiger program, these tertgdare filled by our front-
end giving us the TAT. At this point, the C++ compiler doescassive transformations
until getting the executable code.

An analogy can easily be done between our Tiger compiler ataalard compiler.
Where a standard compiler provides AST classes, we provi&lerAeta-classes. Where
a standard compiler builds an AST expressed as objects, WdeatUAST expressed as
a type (the TAT). A standard compiler provides classes farajonal analysis, we
provide meta-classes to do this work.

It has been shown that a Turing machine could be construcitbdemplate con-
structs ([12]). Any work traditionally done by a standardrgmler can theoretically be
done with C++ meta-programs. The method that we presentdtiois be adaptable to
any other language. The only restrictions are the C++ catipil times and memory
use.

4 Translation into TAT

Let us return to the Expression Templates technique witffialt@ving Tiger program:
(5 « 10 + 1)

Since the Expression Templates technique was originadlgl tsdescribe and eval-
uate simple expressions (literals, variables, unary,rigiaad potentially n-ary oper-
ations), such examples can easily be constructed with ite isean example of TAT
corresponding to the previous example:

Listing 11.1. A simple TAT

typedef BinOp< BinOp< Constlnt<5>, Constlnt<10>, Times >,
Constint<1>, Plus >

programt;

However this covers a very small part of the whole prograngitanguage. Impor-
tant features such as type declarations, function de@asaand calls, or flow control
cannot be expressed. Moreover, Tiger expressions are:tyeegiant our compiler to be
able to evaluate and work on typed-expressions. When titgitrgnslate more complex
examples into TATs, different problems arise such as th@iisblem, or the reference
problem.

4.1 The list problem

Let us consider this Tiger example:

212

Listing 11.2. Two functions

let

function double(x : int) : int = 2 % X

function sum(a :int, b : int, ¢ : int): int = a+ b + ¢
in

double (30) — sum(6, 1, 2)
end

When building this program’s TAT, we need to express liseldration lists, func-
tion formals lists, and function call arguments lists. Tisgial way to do this is to use
recursive lists. A recursive list is defined as empty or asatedement followed by a
tail list.

This can be transposed into C++ with the static list techamidescribed by [12].
We use a template class List, which parameters are the fastesit (a type), and the
remaining list. A class EmptyList is used to mark the end eflist. With this notation,
we can express lists as types. For exampleum (6, 1, 2) ,the argumentlist can
be expressed with the following TAT:

List< Constlnt<6>,
List< Constint<1>,
List< Constlnt<2>,
EmptyList
>
>
>

The full TAT conversion of a similar sample is given in the hesction. Static lists,
which are a particular case of trees, will be used extensivethe remaining of this
paper: this is our first addition to the Expression Templ&eknique.

4.2 The reference problem

The following simple example illustrate the reference pealn

Listing 11.3. Two variables addition

let
var i : int := 80
var j : int := 6
in
i+
end
The expressiom refers to the variable declaratiomar i : int := 80 . The
same way, the declaratioar i : int ;= 80 refers to the builtin typat . This

example demonstrates that we cannot consider programsnggesirees. The main
structure acts as a tree, but the implicit relations by eafee transforms this tree into a
DAG (direct acyclic graph).

213

The TAT has to describe a tree plus some graph relations bataéeclaration and
its uses. This is the main difficulty compared to the ExpasJiemplates technique.
Without a reference mechanism, we cannot express conaeptas types or functions.

Each time a declaration is referred, we need a pointer thé.fdllowing part shows
how to solve this: each declaration will have a location ireealuation environment.

5 Evaluation Environment

At every point in the program, there is a set of active detilana which can be used.
An expression such ds+ j (listing 11.3), ordouble(30) - sum(6, 1, 2)

(listing 11.2) cannot be evaluated without the declaratiomtext: we need to maintain
an environment at evaluation time.

Tiger defines some builtin types and functions. These datitens, visible at every
point in every Tiger program, will be the initial state of cemvironment. Declarations
that have the same visibility are grouped into scopes. Imghminder of this paper, the
list of declarations of the same scope is callethank

The main operations we need on this environment are pushihga@pping chunks.
Moreover, we need a way to extract a declaration, given itakland its location in the
chunk.

New declarations are introduced with the¢ -in -end structure, which is com-
posed of two parts. A first declarative part, located betweenandin , allows declar-
ing a chunk. The second part, is an expression, in which weausarprevious declara-
tions. Evaluating the whole structure is done by pushingctihenk into environment,
evaluating the expression and finally popping the chunk.

The environment can also be modified by a function call: whgs occurs the
evaluation point is changed. This implies that the set afacteclarations changes.

Listing 11.4. A function call

let
function double(x : int) : int = 2 % X
in
let
var i : int := 17
in
double (i) + i
end
end

In the above example, the function call is evaluated thewdhg way:

1. Evaluate function parameters: herei = 17.

2. Initialize formal values: x— i

3. Pop declarations introduced between the function datider and the function call:
this restores the environment of the function implemeatatin our case: pop the
chunk containingzar i : int ;= 17 , as the function double does not know
this declaration.

214

4. Push formals declarations. Here: push a chunk containingnt
5. Evaluate the function bod{2 * x)
6. Restore callers environmertdoes not exist any more, is reintroduced.

At this point, a stack seems to be appropriate for our nedus.stack will be filled
with declaration chunks. A declaration chunk simply comsathe corresponding part
of the TAT. At a given evaluation point, each visible dectamais located with a pair
of indexes: the index of the chunk, and the index of the dattan in the chunk. So a
simple pair of indexes is enough to refer to a declaration.

The example 11.3 can now be translated into the following: TAT

LetinEnd<
List< Var< Constlnt< 80 >, builtin_types , inttype >,
List< Var< Constlnt< 6 >, builtin_.types , inttype >,
EmptyList > >,
BinOp< SimpleVax 0, 0 >, SimpleVax 0, 1 >, Plus >

>

The pair< 0,0 > refers to the first declaration of the first chunk, which cep@nds
tovar i:= 80 . The pair< 0,1 > refers tovar j;= 6 . builtin _types and
int _type are predefined integer values, which identify the builtin Tiger type.
This mechanism of environment and location pair is a formaticpointers.

We are also able to translate example 11.4:

LetlinEnd< let
List< Function< List< function double (
TypelLnk< builtin_types , 1> >, X @ int) =
BinOp< Constint< 2 >, 2
SimpleVar<1l, 0 >, Times >, * X
0> >,
LetInEnd< in
List< Variable< Constint< 17 >, let
builtin_types , 1> >, var i : int := 17
in
BinOp< FuncCallk 0, 0, double (
List< SimplevVar 1, 0> > >, i)
SimplevVa 1, 0 >, Plus > + i
> end
> end

Let's remember the goal: translating an AST into a C++ type (fAT), so that the
compiler can work on this type. In the proposed implemeaoigtihe environment re-
lated computations are done at compile-time. Meta-prograng techniques will allow
us to reduce the execution-time work considerably.

6 Implementation

The basis of the Expression Templates technique is to wtémalate class per kind of
node available in the AST. The parameters of this templaté¢ha node subtrees. Each
of these template classes correspond to a node of the AST.

215

These template classes fulfill two roles: first they expriesST information. This
is implicitly done with class organization into the TAT. $&d, our classes must provide
evaluation code.

In the case of expressions, this consists on two tasks: geedsglculation, and the
value calculation. The declaration classes provide soimer gervices such as common
operations for types.

Apart from AST meta-classes, we also need to provide mede-tmperform some
static processing. This corresponds to the set of opesatieiated to the evaluation
environment.

6.1 Global organization

Two kinds of classes have to be written: expression clagskdeclaration classes. Dec-
larations will be further distinguished via classes spexsd for type, variable and func-
tion declarations. Moreover, the implementation alsoudek the environment mecha-
nism, and tools for its manipulation.

Note that the base classefstNode , Expression , Declaration ,
TypeDec... are only used for some static checking. These classesareery
interesting, and will not be detailed in this paper.

6.2 Expression classes

As in the Expression Templates technique, each Expres$ss will implement an
evaluation method. These methods are inlined, so that thecGmpiler can build effi-
cient evaluation code.

The main difference with Expression Templates is due to taduation environ-
ment; The evaluation method depends on the current envanthnAnother striking
difference is that expressions are typed. Evaluating anesspn consists in comput-
ing both its type and value. We want expression types to briatesd statically: this
work will be done through typedefs. All the typed values tatmanipulate are repre-
sented with four bytes. In order to simplify, we decided tpresent all variables with
thevoid * type. This lead us to the following model adopted by all ezpi@en classes:

/I var_t represent a nontyped value.
typedef voidx var_t;

/I Here comes the template parameters: the TAT subtrees.
template< ... >
struct AnExpression: public Expression
{
[/l Evaluation is dependent of current environment.
template<class T_env>
struct eval
{
/] statically compute the expression type
typedef ... T;

216

+

/1 inline method that evaluates the expression value
inline var_t doit () { ...}

+s

template<signed Value>
struct Constint: public Expression

{
template<class T_env>
struct eval
{
typedef IntType T;
inline var_t doit () {return (var_-t)Value;}
1
s
ConstInt < 123 > is a TAT: its value and type can be evaluated:
typedef Constint<123> programt;
var_t value = programt::eval< initial_env_t >::doit();
typedef programt::eval< initial_env_.t >::T type;
Notice that: " is C++ for Java " ”

Two types are predefined:

— var _t represents all Tiger variables. For examplejran can directly be casted

into avar _t (these two types have the same size: four bytes). Most of éime
var _t corresponds to a record pointer or an array pointer.

— initial _env _t corresponds to the Tiger builtin environment: builtin tgfseich

asIntType or StringType , and builtin functionsggrint , ord , concat ...).

The TAT given in listing 11.1 can now be evaluated. Here isémeplate expansion

chain that leaded to the result: 51.

(62 N

programt::eval< initial_env_t >::doit()
BinOR< Constlnt<5>, Constint<10>, Times >
creval< initial_env_t >::doit() +

Constint<l>:eval< initial_env_t >::doit();

Constint<5>:reval< initial_env_t >::doit() =

Constint<10>::eval< initial_env_t >::doit() + 1;

5% 10 + 1

51

6.3 Declaration classes

The first role of declaration classes is to store informat#ative to the declaration. For
example a variable declaration must store its type andainiilue. This is done with
template parameters exactly as above. The second role lafrdiéon classes depends

217

on the kind of declaration. For variables and functionsy @ame utility functions are
implemented. The type classes do more things: their seageds to implement all
operations related to the type: assignment, compariseation and destruction. These
operations can depend on the environment. This is for exathpl case for an array,
which refers to the type of its elements.

Here is the model of type declaration classes:

struct AType: public TypeDec

{
/I Type eval depends on environment
template<class T_env>
struct eval
{
// Common operations are implemented here
void create(vart& v);
void destroy(vacrt v);
void assign(vart& left, var_t right);
int compare(vart left, var_t right);
}
s

Such classes are implemented fdoidType , IntType , StringType
ArrayType andRecordType .

Each new type definition in a Tiger program, will result in nigywe operations. Our
Tiger compiler generates evaluation code, but also opgratiode. In order to emphasis
on this contribution, we chose to implement assignment amaparison as structural.
At the contrary to the Tiger specifications, when two reca@mgscompared, this is done
member by member. When an array is assigned, the all costeapied.

6.4 Program Environment

We have seen that type and expression evaluations depemdemviaonment, through
the type identified byl _env in the previous code samples. We want the environment
to be computed statically: we need an implementation whiichva to push, pop, and
retrieve declarations at compile-time. Therefore we usgragtatic lists: an environ-
ment is implemented as a static list of declaration chunksleglaration chunk is a
part the TAT which is also a static list. This constructiolows us to manipulate the
environment:
Pushing and popping declaration chunks is done with tysedef

/! Push Tnew.chunk on Tenv, yielding Tnew.env.
typedef List< T_new.chunk, Tenv > T_new_env;

// Pop an element of Jenv, yielding Tnew.env.
typedef T_env:: tail T_new_env;

Environment access is done with a template class and a §patian:

template<class T_env, unsigned N>

218

struct ListGet

{
typedef ListGet<T_env::tail, N— 1>:T T;
s

template<class T_env>
struct ListGet<T_env, O

{

typedef T_env::head T;
s
Il Access to the chunk number 3.
typedef typename ListGet<T_env, 3>:T T_chunk.3;
I/l Access to the declaration number 1 of this chunk.
typedef typename ListGet<T_chunk3, 1>::T T_decl 3_1;

We are now able to write a simplified version of thetinEnd template class.

template<class T.decl, class T_exp>
struct LetlnEnd
{

template<class T_env>

struct eval

{
typedef List<T_decl, T.env> T_new.env;
typedef T_exp::evakT_new.env>::T T;
var_t doit()
{
/Il Create new variables declared in _@ecl
/Il (not detailed here).
/I Evaluate the expression in the new environment.
var_t res = Texp::evakT_new.env>::doit();
/I Destroy the variables declared in _decl
I/l (not detailed here).
return res;
}
}

All the needed operations on the environment can be donetyyithoperations: we
are able to fully compute the environment at compile-timedach evaluation point.
Function calls are not detailed here, but they use the saramtipns. Note that all
functions are evaluated each time they are called (as ifiimetions). This implies that
if we want a recursive function to be translated as a C++ sdesifunction, we need
the environment to be exactly the same at each recursive call

219

6.5 The dynamic part

Not everything can be done at compile-time. The Tiger lagglalows some construc-
tions which cannot be resolved statically.

The main dynamic stuff is the variable declaration and uskeiVa variable is
declared, we need to store its value somewhere. At eachagiaiypoint of the program,
there is a set of variables which are accessible.

A variable can be of any supported Tiger type: it can be aryaarstring or a record.
There is no static representation of such values: we neddr®tis into memory at the
program execution. Therefore we use the C++ stack: vasatdelared in det -in -
end construction are declared as local variables inltt#nEnd evaluation method.

The Tiger has a nested let declaration. At a given evalugi@nt, there can be
several visible scopes. This obliges us to maintain a sthskape pointers during the
whole execution process. Accessing a variable is perforwittdtwo indirections: a
first one to get the right scope and another one to reach thiabl&into this scope.
We could have chose to implement variables access withia Bkt mechanism. This
would corresponded to the adaptable closure present inhibenix library, part of the
spirit project ([4]).

These indirections are our main limitation to really penfios static resolution of
programs. Conversely, here is a program thahnisrely statically evaluated:

Listing 11.5. A program solved statically

let
function foo() = 20 % 20
function bar() = 30 / 2

function smousse() =if (80 > 6) then 1 else O
in

(foo() + bar() + smousse()) 4
end

There is no variable used so, after our transform towards, @setcan expect that
a C++ compiler can statically solve this program. In thistipatar case, using a C++
compiler which has good optimization capacities, we diyeobtain one assembler
instruction which gives the integer result.

6.6 The C++ program

The C++ program always have the same structure:

Il Include all template classes needed to express and evedua
the AST.
#include "all.h"

Il Generate the TAT.
typedef ... programt;

int main ()

{

220

// instantiate program evaluation
return (int)programt::eval< initial_env_t >::doit();

}

The line of the main() launch the doit() instantiation, whresults in the generation
of the program evaluation code. This work is done by the C+mniter.

7 Results

Our compiler covers all of the Tiger language. Lot of Tigevgmams have been tested,
and work successfully. Our process has been tested with ,o@#t03.2 and icc which
gives slightly faster programs.

To experiment the performance of generated code, some ffiggrams compiled
with our process have been compared to their C hard-codedbdeyt. In average, the
C program goes two to three times faster than the (C++) Tiger @his performance
lack is mostly explained by the variable access cost: eamdsameeds two indirections.
But viewed as an evaluation process, this can be considergolaal results.

This performance highly depends on the aptitude of the C+npiler to optimize
code. These optimizations are essentially obtained bynthrérig mechanism. This op-
timization has been tested using the g++ option calfiedine-limit . This op-
tion influences the quantity of functions inlined. This esipece showed us the impor-
tance of good inlining at compile-time. Optimizations amnd until approximatively
-finline-limit-1000 , Which is much more than for usual C++ programs. This
can be explained by the amount of functions that are instti Indeed for each node
of the AST, there is at least one function which will be used.

8 Conclusion

We have seen that a program can be expressed as an Abstrteot Bsee (AST) given
the language grammar. Using a technique based on ExpréRsigplates, we are able
to build a C++ type which describes this AST. This repred@nds called the TAT
(Tree As Type).

Building and evaluating the TAT poses various problems. \&edto express lists
(for declarations, arguments, etc.). This problem is sbligng the Static list technique.
In the TAT, some elements refer to others. The referencel@mbmplies the use of
an environment which is implemented using a stack. We hase g&t this container
allows the required operations: pushing, popping and aauogsThis stack is directly
filled with parts of the TAT: this is a form of static pointerghich solves the reference
problem.

An implementation based on the Tiger language has been gedpdhis imple-
mentation intensively uses meta-programming technighesefore, the C++ compiler
is able to do lot of work at compile-time: expression typed alement references are
solved statically. The limits of static resolution is theeus variables which can only
be manipulated dynamically.

221

Our Tiger compiler is originally inspired by the Expressibemplates technique.
However, the evaluated constructions are not restrictédxdsic ones, such as unary or
binary operators, but includes the common flow control amiesibns, structured types,
variables, and nested functions. Moreover, thanks to teeofig static environment,
such advanced operations can be evaluated by jumping frenpaint of the program
to another. This happens for example each time a functioallisct That characteristic
is a noticeable difference with the Expression Templatdsinre evaluated in a simple
bottom-up fashion.

This original technique shows how we used C++ meta-progriagin order to
work on abstract syntax trees of a mostly functional prognamg language. Indeed the
C++ generative power allowed us to implement compiler pantstranslation into C++
equivalent code.

222

Tiger
source |
program

Parsing

lexical analysis,

grammatical analysis

Semantical

CH++
code
with

TAT

instanciated

Two layer
evaluation

templates

analysis

type checking,
scopes,
bindings

»| Operational
analysis

template instantiation,
transformations

Static
evaluation

function inlining,
types resolution

code

Dynamic
evaluation

int

Front-end program

C++ compiler

Fig. 1. Placement in the compilation chain

LetinEnd

Const : 6

Fig. 2. AST of example 11.3

Expression

Declaration

[TypeDec |

[varDec |

| FuncDec |

Fig. 3. Main kind of classes

223

Bibliography

[1] A.W. Appel. Modern Compiler Implementation in C / Java / MICambridge
University Press, 1997.

[2] J.A. Crotinger, J. Cummings, S. Haney, W. Humphrey, Stniesin, J. Reyn-
ders, S. Smith, and T.J. Williams. Generic programming ifOR4A and PETE.
In Generic Programming, Proceedings of the International ffamon Generic
Programming volume 1766 ol ecture Notes in Computer Scienpages 218—-.
Springer-Verlag, 2000.

[3] K. Czarnecki and U. Eiseneckdgenerative Programming: Methods, Techniques
and Applications Addison-Wesley, 2000.

[4] Spirit group. Spirit parser framework, 2002.

[5] S. Haney and J. Crotinger. How templates enable higfepmance scientific
computing in C++.Computing in Science and Engineerjig4), 1999.

[6] G. Powell J. Jarvi. The boost lambda library, 2002.

[7] J. Jarvi. Compile time recursive objects in C++Technology of Object-Oriented
Languages and Systenmages 66—77. IEEE Computer Society Press, 1998.

[8] Brian McNamara and Yannis Smaragdakis. Functional @ogning in C++ using
the FC++ library.SIGPLAN NoticesApril 2001.

[9] Jorg Striegnitz and Stephen A. Smith. An expressiorptete aware lambda func-
tion. In First Workshop on C++ Template Programming, Erfurt, Gerrga@cto-
ber 10 2000.

[10] C. van Reeuwijk. Rapid and robust compiler construttising template-based
metacompilation. Irl2th International Conference on Compiler Construction
Lecture Notes in Computer Science, pages 247—, Warsawnd,ofgpril 2003.
Springer-Verlag.

[11] T. Veldhuizen. Expression templatés++ Report, 7(5):26-31, June 1995.

[12] T. Veldhuizen. Techniques for scientific C++. Techhiegort, Computer Science
Department, Indiana University, Bloomington, USA, 2002.

A A simple C++ meta-program and its evaluation

template<unsigned i>
struct factorial

{
enum {res = i x factorial< i — 1 >::res};

b

template<>
struct factorial<O>

{

enum {res = 1};

224

+

enum { fact4 = factorial<4>:res };

Thanks to the template expansion mechanism, this C++ moetztibn allows to com-
pute a factorial at compile-time:

factorial<4>::res

4 x factorial <3>::res

3 x factorial<2>:res

2 « factorial<l>:res

2 + 1 x factorial<O0O>::res
2 1 x 1

* ¥ X ¥

3
3
3

* % ¥

N DDMD

B A full tiger program

let
type any = {any : int}
var buffer := getchar ()

function printint(i: int) =
let function f(i:int) = if i>0
then (f(i/10); print(chr(i—i/10«10+o0rd("0"))))
in if i<0 then (print("="); f(—i))
else if i>0 then f(i)
else print("0")
end

function readint(any: any) :int =
let var i := 0
function isdigit(s : string) : int =
ord(buffer)>=ord(”"0”) & ord(buffer)<=ord("9")
function skipto () =

while buffer=" " | buffer="\n"
do buffer := getchar()
in skipto ();
any.any := isdigit(buffer);
while isdigit(buffer)
do (i := ix10+ord(buffer)ord("0"); buffer := getchar());

end
type list = {first: int, rest: list}

function readlist() : list =
let var any := any{any=0}

225

var i := readint(any)

in if any.any
then list{first=i,rest=readlist (}
else nil

end

function merge(a: list, b: list) : list =
if a=nil then b
else if b=nil then a
else if a.first < b.first
then list{first=a.first ,rest=merge(a.rest,b)
else list{first=b.first ,rest=merge(a,b.res})

function printlist(l: list) =
if I=nil then print("\n”")
else (printint(l.first); print(” "); printlist(l.rest))

var listl := readlist()
var list2 := (buffer:=getchar(); readlist())
in
print ("list 1 : \n");
printlist (listl);
print ("list 2 : \n");
printlist (list2);
print ("merged list :\n”);
printlist (merge (listl, list2))
end

C TAT of the previous program

The following program compiles in less than two minutes vgtht 3.2 on a 350Mhz
processor.

#include "all.h"

typedef LetInEnd< List< RecordType< List< TypelLnk< builtin_types , 1> > > >,
LetInEnd< List< Variable< FuncCalk builtin_funcs , 9, Listk > >, builtin_types , 2
> >,
LetlnEnd< List<
Function< List< TypelLnk< builtin_types , 1> >, LetlnEnd< List<
Function< List< TypelLnk< builtin_types , 1> >, If< BinOp< SimpleVaxk 5, 0 >,
Constint< 0 >, GreatThan>, ExplList< FuncCalk 4, 0, List< BinOp< SimpleVaxk 5,
0 >, Constlnt< 10 >, Divide > > >, ExpList< FuncCalk builtin_funcs, 0, Lisk
FuncCalk builtin_funcs , 4, Lisk BinOp< BinOp< SimpleVax 5, 0 >, BinOp< BinOp<
SimplevVak 5, 0 >, Constin 10 >, Divide >, Constlnt 10 >, Times >, Minus >,
FuncCalk builtin_funcs , 3, Lisk ConstStringgc 0 > > >, Plus>>>>>>> >, 4
>
>,
ExpList< If < BinOp< SimpleVaxk 3, 0 >, Constin 0 >, LessThan>, ExpList<
FuncCalk builtin_funcs , 0, Lisk ConstString< 1 > > >, ExpList< FuncCalk 4, 0,
List< BinOp< Constint< 0 >, SimpleVak 3, 0 >, Minus > > > > >, If< BinOp<
SimpleVak 3, 0 >, Constint 0 >, GreatThan>, FuncCalk 4, 0, List< SimpleVak
3, 0> > >, FuncCalk builtin_funcs , 0, Lisk ConstString< 2 > > > > > > >

226

, 2>

, List<

Function< List< TypelLnk< 0, 0> >, LetlnEnd< List< Variable< Constint< 0 >,
builtin_types , 1> >,

LetlnEnd< List<

Function< List< TypelLnk< builtin_types , 2> >, If< BinOp< FuncCalk builtin_funcs ,
3, List< SimpleVaxk 1, 0> > >, FuncCalk builtin_funcs , 3, Lis ConstString<
3> > >, GreatEq >, BinOp< FuncCalk builtin_.-funcs , 3, Lisk SimpleVak 1, 0> >
>, FuncCalk builtin_funcs , 3, Lisk ConstString< 4 > > >, LessEq >, Constin
0> >, 5>

, List<

Function< List< >, While< If < BinOp< SimpleVaxk 1, 0 >, ConstStringg 5 >, Equal
>, Constin 1 >, BinOp< SimpleVax 1, 0 >, ConstString< 6 >, Equal > >, Assign<
SimpleVaxk 1, 0 >, FuncCalk builtin_funcs , 9, Lisk >>> >, 5>

> >,

ExpList< FuncCalk 5, 1, List< > >, ExpList< Assign< FieldVar< SimpleVax 3, 0 >,
0 >, FuncCalk 5, 0, List< SimpleVaxk 1, 0> > > >, ExplList< While< FuncCalk
5, 0, List< SimpleVaxk 1, 0> > >, ExplList< Assign< SimpleVax 4, 0 >, BinOp<
BinOp< BinOp< SimpleVaxk 4, 0 >, Constlnt 10 >, Times >, FuncCalk
builtin_funcs , 3, Lisk SimpleVaxk 1, 0> > >, Plus >, FuncCalk builtin_funcs ,
3, List< ConstStringg 7 > > >, Minus > >, ExpList< Assign< SimpleVax 1, 0 >,
FuncCalk builtin_funcs, 9, Lisk > >>>> >, ExplList< Simplevax 4, 0> > > >
>>>

, 2>

> >,

LetlnEnd< List< RecordType< List< TypeLnk< builtin_types , 1>, List< TypeLnk< 3, 0
>>>> >,

LetlnEnd< List<

Function< List< >, LetInEnd< List< Variable< Recordk 0, 0, List< Constint< 0 > >
>, 0, 0 >, List< Variable< FuncCalk 2, 1, List< SimpleVaxk 6, 0> > >,
builtin_types , 1> > >,

ExpList< If < FieldVar< SimplevVak 6, 0 >, 0 >, Recork 3, 0, List< Simplevaxk 6, 1
>, List< FuncCalk 4, 0, List< >>>> >, Nil >> >

, 4>

, List<

Function< List< TypelLnk< 3, 0 >, List< Typelnk< 3, 0> > >, If< BinOp< SimpleVax
5, 0 >, Nil, Equal >, Simplevak 5, 1 >, If< BinOp< SimpleVax 5, 1 >, Nil,
Equal >, SimpleVak 5, 0 >, If< BinOp< FieldVar< SimpleVax 5, 0 >, 0 >,
FieldVar< SimpleVax 5, 1 >, 0 >, LessThan>, Recork 3, 0, List< FieldVar<
SimpleVak 5, 0 >, 0 >, List< FuncCalk 4, 1, List< FieldVar< SimpleVaxk 5, 0 >,
1 >, List< Simplevaxk 5, 1>>>>>> >, Recork 3, 0, List< FieldVar<
SimpleVak 5, 1 >, 0 >, List< FuncCalk 4, 1, List< SimpleVak 5, 0 >, List<
FieldvVar< SimpleVaxK 5, 1 >, 1>>>>>>>>> >, 4>

, List<

Function< List< TypelLnk< 3, 0> >, If< BinOp< SimpleVaxk 5, 0 >, Nil, Equal >,
FuncCalk builtin_funcs , 0, Lisk ConstString< 8 > > >, ExpList< FuncCalk 2, 0,
List< FieldVar< SimpleVaxk 5, 0 >, 0 > > >, ExplList< FuncCalk builtin_funcs ,
0, List< ConstStringg 9 > > >, ExplList< FuncCalk 4, 2, List< FieldVar<
SimpleVak 5, 0 >, 1 >>>>>> >, 4 >

>> >,

LetlnEnd< List< Variable< FuncCalk 4, 0, List< > >, builtin_types, 0>, List<
Variable< ExplList< Assign< SimpleVax 1, 0 >, FuncCalk builtin_funcs , 9, Lisk
> > >, ExplList< FuncCalk 4, 0, List< > > > >, builtin_types, 0> > >,

ExpList< FuncCalk builtin_funcs , 0, Lisk ConstString< 10 > > >, ExpList<
FuncCalk 4, 2, List< SimpleVak 5, 0> > >, ExplList< FuncCalk builtin_funcs ,
0, List< ConstStringg 11 > > >, ExplList< FuncCalk 4, 2, List< Simplevak 5, 1>
> >, ExpList< FuncCalk builtin_funcs, 0, Lisk ConstString< 12 > > >, ExpList<
FuncCalk 4, 2, List< FuncCalk 4, 1, List< SimpleVaxk 5, 0 >, List< SimpleVax
5,1>>>>>>>>>>>>>>>> > >

programt;
const charx metasmousse :: consstring [] = {"O* , " , "0" , "O" , "9" , "_ ", "012
"Lt o, Mo12t o, v, st 1. \o12" , “list 2. \012" , "merged _list _:_\012" ,
NULL };
int main ()

227

return (int)programt::eval< initial_env_.t >:doit();

}

228

JSetL: Declarative Programming in Java
with Sets

Elisabetta Poleo and Gianfranco Rossi

Dip. di Matematica, Universita di Parma,
Via M. D'Azeglio 85/A, 43100 Parma (Italy)
gianfranco.rossi@unipr.it

Abstract. In this paper we present a Java library—called JSetlL—tHatoh
number of facilities to support declarative programmirkeg lihose usually found
in logic or functional declarative languages: logical waies, list and set data
structures (possibly partially specified), unification ammhstraint solving over
sets, nondeterminism. The paper describes the main featfirdSetL and it
shows, through a number of simple examples, how these &=atan be exploited
to support a real declarative programming style in Java.

Keywords: Declarative Programming; Constraint Programming; Jsieaideter-
minism.

1 Introduction

Declarative programmingDP) is usually called into play in the context of functional
and logic programming languages (e.g., Haskell and Prologitively, declarative
programming means focusing @rhata program does, rather than bowit does. No-
tions such as logical variables, side-effect freenesstfomal composition, recursion,
nondeterminism, etc., are all valuable features of a pragramg language that sup-
ports declarative programming. High-level of control aradedabstractions, as well as
a clear semantics, are also fundamental features to supeadeclarative reading of a
program. Declarative programming have been mainly exgddit artificial intelligence
and automated reasoning applications, but most of its festtan be conveniently used
also in more general settings to support rapid softwareopyping and (automatic)
program verification, as well as to allow parallel executidprograms.

Declarative programming is often associated witmstraint programmindCP),
both in the context of logic programming languages (e.g...IESE [9]), and in the
context of functional and functional plus logic programmianguages (e.g., Oz [13])).
As a matter of fact, constraints provide a powerful tool f@atiang solutions as sets of
equations and disequations over the selected domainshwnécthen solved by us-
ing domain specific knowledge, with no concern to the ordevtiich they occur in the
program. As such, CP languages constitute powerful moggliol, in particularly suit-
able to coincisely express solutions for artificial ingdihce and constraint-satisfaction
problems (e.g, combinatorial problems).

While it is undeniable that DP languages (and, in partic@&r languages) provide
valuable support for programming, it is also a reality thaismreal-world software

229

development s still done using traditional, possibly abjeriented (OO), programming
languages, such as C++ and Java.

Efforts to make DP languages more appealing for real-wqfieations have led
to various proposals, mainly intended to include objeatrted features into DP lan-
guages: several languages, like Prolog and Haskell, haezthobject-oriented exten-
sions. A complementary approach is trying to embed DP featim a more conven-
tional framework—in particular an object-oriented one—wihich one can exploit the
DP paradigm while retaining all the advantages of consirémt programming and
software structuring that are typical of conventional pesgming languages. This in-
tegration can take place according to (at least) two distipproacheg:i) making the
new features available as part ofilarary for some existing languagé¢ii) defining a
new programming language, or extending an existing oneyéh s way DP features
are viewed as “first-class citizens” of the language itdetith approaches have pros
and cons and a precise comparison of them is likely to be aneisting topic for future
research.

One of the best known proposals that integrate some DP &saituia conventional
OO0 framework following thdibrary approachis that of the ILOG Solver [14, 12]. In
this system, constraints and logical variables are hanal$edbjects and are defined
within a C++ class library. Thanks to the encapsulation gretator overloading mech-
anisms, programmers can view constraints almost as if gegdlyrwere part of the lan-
guage. Among other proposals that take a similar approadawenention INC++[11],
NeMo+ [16], and JSolver [2], as concerns the addition of taists to OO languages,
while Frappe [3] and Gisela [10] are two proposals that theemore general problem
of making declarative programming features available im@ventional programming
environment, though focusing on some specific applicati@nsther proposal that can
be cited in this context ig1 Prolog [5], a Java package that implements Prolog.

Thenew language approac¢i the context of conventional programming languages
(approach(ii)), is adopted for instance in the language Alma-0 [1], in &itan [15],
and in DJ (Declarative Java) [17, 18]. A potential advantaigiis approach with re-
spect to that based on a library is that it allows a tightexgration between constructs
of the host language and DP facilities, making programs &mgnd more “natural”
to write. On the other hand, however, the design and devedopof a new language
is surely a more difficult task, and the resulting systemslikety to be less easy to
integrate with other existing systems and to be accepteddyrammers.

The work presented in this paper is another proposal fotigwiie OO library ap-
proach: we endow an OO language, namely Java, with fasifitiesupporting declara-
tive programming, by providing them as a library—calledtlSBifferently from other
related work we do not restrict ourselves to constraintswaitry to provide a more
comprehensive collection of facilities to support a reatldeative style of program-
ming. Furthermore, we try to keep our proposal as generabasilgle, to provide a
general-purpose tool not devoted to any specific applicafibe most notable features
of JSetL are:

— logical variables;
— list and set data structures, possibly partially specified, Containing uninitialized
logical variables)

230

— unification (in particular, unification over lists and sets)

— a powerful set constraint solver which allows to computévpiartially specified
data

— nondeterminism (though confined to constraint solving).

We claim that these facilities provide a valuable suppordéolarative program-
mingand we show this with a number of simple examples. In padicthle constraint
solver allows complex (set) expressions to be checked tisfisdility, disregarding
their order and the instantiation of (logical) variableswating in them. Moreover, the
use of partially specified data structures, along with thedederminism “naturally”
supported by operations over sets, are fundamental festtuedlow the language to be
used as a highly declarative modelling tool.

The paper is organized as follows. In Section 2 we give anrinéb presentation
of JSetL by showing a simple Java program using JSetL. Ini@e8twe introduce
the fundamental data structures of JSetL, namely logicahbkes, sets and lists. In
Section 4, we describe the (set) constraint handling feeslisupported by our library
and we show how constraint solving can be accomplished, andithinteracts with
the usual notion of program computation. The fundamentabn@f nondeterminism
and its relationship with sets is addressed in Section 5ebtiéh 6 we show how user
defined constraints can be introduced in a program and hopnctre be used. Finally,
in Section 7 we briefly discuss future work.

2 An informal introduction to programming with JSetL

First of all we show a simple example of a Java program usirgLJ8hich allows us
to give the flavor of the programming style supported by thealiy.

Problem: Compute and print the maximum of a set of integers

A truly declarative solution for this problem can be statsdalows: an element of
s is the maximum o8, if for each elemeny of s it holds thaty < x. The program
below shows how this solution can be immediately implemeirieJava using JSetL.
Observe that here we are deliberately assuming that eredathot a primary require-
ment. Indeed, JSetL is mainly conceived as a tool for rapigveoe prototyping, where
easiness of program development and program understameingil over efficiency.

class Max
{
public static Lvar max(Set s) throws Failure
{
Lvar x = new Lvar();
Lvar y = new Lvar();

Solver.add(x.in(s));
Solver.forall(y,s,y.leq(x));
Solver.solve();

return Xx;

}

231

public static void main (String[] args)
throws |OException, Failure

int[] sample _set _elems = {1,6,4,8,10,5 4
Set sample _set = new Set(sample _set _elems);
System.out.print(" Max = ");
max(sample _set).print();
}

}

For the sake of simplicity we assume that the set of integedgéctly supplied by
the program (instead of being read for instance from a filends we will focus on the
definition of the methodnax that computes the maximum ef x andy in max are
two logical variables and both are uninitialized. Invooatof theadd method adds the
constrainx.in(s) (i.e.,x € s) to the current constraint store. This constraint is eval-
uated totrue if s is a set andc belongs tcs. If x is uninitialized when the expression
is evaluated this amounts tmndeterministicallyassign an element af to x. Invoca-
tion of theforall ~ method allows us to add to the constraint store a new constrai
yleq(x) (i.e.,y < x) for eachy belonging tos. As soon as theolve method
is invoked the constraint solver checks whether the cuweltection of constraints in
the constraint store is satisfiable or not. If it is, the irstan of thesolve method ter-
minates with success. The valuexofepresents the integer we are looking for and it is
returned as the result afax. If, on the contrary, one of the constraints in the constrain
store is evaluated tfalse, backtracking takes place and the computation goes back til
the nearest choice point. In this case, the nearest and bolgepoint is the one cre-
ated by thex.in(s) constraint. Its execution will bind nondeterministicatlyo each
element ofs, one after the other. If all values sfthave been attempted, there is no fur-
ther alternative to explore and the computatiomaix terminates raising an exception
Failure . If no catch clause for this exception is provided, the whole computatio
terminates reporting a failure (actually this is not theecathemax method, since a
value ofx for which all the constraints hold surely exists—exactky thaximum of).

Executing the program with the sample set of integers dedlerthemain method
causes the messaljlax = 10 to be printed to the standard output.

3 Logical variables and composite data objects

JSetL provides logical variables and two new kinds of datacstres: sets and lists.
These new features are implemented by three clakses,, Lst , andSet , for cre-
ation and manipulation of logical variables, lists and setspectively.

Lists and sets represent two different data abstractiohsen lists the order and
repetitions of elements are important, in sets order anetitggms of elements do not
matter. Thus, for instancé, 2}, {2,1}, and{2, 1,2} all denote the same set, while
the analogous list expressions denote different listh@lgh sets and lists can be often
used interchangeably, there are cases—especially whearsgtists contain unknown
elements—in which one choice can be more appropriate thaotther one. For ex-
ample, if one wants to represent an undirected graph, aeciékaty to be represented

232

as sets rather than as lists. As another example, if one w@state that a collection
C must contain the numbadr, disregarding the position dfin C, C is conveniently
represented as a partially specified set (cf., e.gs3ah Example 2).

3.1 Logical variables

A logical variableis an instance of the clagvar , created by the statement
Lvar VarName = new Lvar(VarNameExt, VarValue);

whereVarName is the variable name/arNameExt is an optional external name of
the variable, an®arValue is an optionalLvar value associated with the variable.

The external names a string value which can be useful when printing the vari-
able and the possible constraints involving it (if omittaddefault name of the form
"Lvar _n", wheren is a unique integer, is assigned to the variable autombtjcal
Lvar are nottyped. Aivar valuecan be either a primitive type value, or any library
or user defined class object (provided it supplies a me#wals for testing equal-
ity between two instances of the class itself). In particuda Lvar value can be an
instance oL.var , Lst , orSet .

A logical variable which has navar value associated with it, or whodevar
value is an uninitialized logical variable (or an uniniizad list or set), is said to be
uninitialized (or anunknowr). Otherwise, the logical variable isitialized. Lvar val-
ues other than uninitialized logical variables (or listssets) are saiitnown values
Uninitialized logical variables will possibly assume a knovalue (i.e., they become
initialized) during the computation, in consequence of s@anstraints involving them.

3.2 List and set definitions

A list is a finite (possibly empty) sequence of arbitrbar values (i.e., thelements
of the list). In JSetL a list is an instance of the class , created by the statement

Lst LstName = new Lst(LstNameExt, LstElemValues);

whereLstName is the list namel.stNameEXxt is an optionakxternal namef the list,
andVarElemValues is an optional array ofvar valuescy,..., ¢, of typet, which
constitute the elements of the list. The constiasttempty is used to denote the
empty list No typing information on elements of a list are provided.

A list can be either initialized or uninitialized. An uniigtized list is like a logical
variable, but constrained to be (possibly) initialized isy bbjects only.

A setis a finite (possibly empty) collection of arbitrakyar values (i.e., thele-
mentsof the set). In JSetL a set is an instance of the cia&ds created by the statement

Set SetName = new Set(SetNameExt, SetElemValues);

whereSetName, SetNameExt, andSetElemValues have the same meaning than in
lists. The constanBet.empty is used to denote thempty setLike a list, a set can
be either initialized or uninitialized, and no typing infeation are associated with the
elements of a set. Differences between lists and sets beeddent when operating on
them through list/set operations (e.g., list/set unifaat-see Sect. 4).

233

Example 1 Lvar , Lst , andSet definitions

Lvar x = new Lvar(); 1 uninitialized I. var.
Lvar y = new Lvar("y"/a); /I initialized I. var.

/I (value'a’),

/I with ext'l name'y"
Lvar t = new Lvar(x); Il uninitialized . var.

/I (same as variable)
Lst | = new Lst("l"); 1! uninitialized list,

/I with ext’l name'l"
int s _elems = {2,483 };
Set s = new Set("s",s _elems); // initialized set
Il (value{2,4,8,3 }),
/I with ext'l name's"

Hereafter, we will often make use of an abstract notation-efvblosely resembles
that of Prolog—to write lists in a more convenient way. Sfieally, [e1, e, . .., e,] iS
used to denote the list containimgelementsey, es, ..., e,, while [] is used to denote
the empty list Moreover,[e;, e, ..., e, | R], whereR is a list, is used to denote a
list containing then elementsey, eo, ..., e,, plus elements irk. In particular, ifR is
uninitialized,[ey, es, . . ., e, | R] represents an “unbounded” list, with elemeats. . .,
e, and an unknown par®. Similar abstract notation will be introduced also to reyer
sets (with square brackets replaced by curly brackets).

Elements of a list or of a set can be also logical variabledigts or sets), possibly
uninitialized. For example, the following declarations

Lvar x = new Lvar();
Object]] pl -elems = {new Integer(1),x }
Lst pl = new Lst(pl _elems);

create the lispl with value[1,x] , wherex is an uninitialized logical variable. A
list (resp., set) that contains some elements which areitiahized logical variables
(or lists, or sets) is said partially specified list (set)Note that in a partially specified
set the cardinality is not completely determined. For examihe partially specified
set{1,x } has cardinalityl or 2 depending on whether will get valuel or different
from 1, respectively (actually, each partially specified setdenotes a possibly infinite
collection of different sets/lists, that is all sets/listkich can be obtained by assigning
admissible values to the uninitialized variables).

3.3 List and set constructor expressions

A list (resp., set) can be also obtained as the result of aetialy a list (resp., set) con-
structor expression.

Let e be anLvar expressior{i.e. an expression returninglzar value),l andm
be list expressiongi.e., expressions returning a list object or a logical able whose
value is a list object), and be an uninstantiated logical variable lit constructoris
an expression of one of the forms:

234

i) Lins1l(e) (head element insertion)
(i) Linsn(e) (tail element insertion)
(4ii) l.extdl(x) (head element removal)
(iv) Lextn(x) (tail element removal)

Expressiongi) and (i) denote the list obtained by addingl(e) as the first and the
last element of the lidt, respectively, whereas expressigis) and(iv) denote the list
obtained by removing frorh the first and the last element, respectively. Evaluation of
expressiongiii) and(iv) also causes the value of the removed element to become the
value ofx. ! Itis important to notice that these methods do not modifyligten which
they are invoked: rather they build and return a new list ioleti by adding/removing
the elements to/from the input list (the same will hold faisséo0).

Constructor expressions for sets are simpler than thodesterIn fact, in lists we
can distinguish between the first (thead and the last (thdail) element of a list,
while in sets the order of elements is immaterial. Moreoorly the element insertion
method is provided since element extraction may involveradeterministic selection
of the element to be extracted that is better handled usingosestraints (see Section
4). Lete be anLvar expression and be aset expressiofi.e., an expression returning
a set object or a logical variable whose value is a set objactet constructois an
expression of the form:

s.ins(e) (elementinsertion)

which denotes the set obtained by adding¢) tos (i.e.,s U {wal(e)}).

Set/List insertion and extraction methods can be conctedr{keft associative). In
fact these methods always returBet /Lst object, and the returned object can be used
as the invocation object as well.

Using the insertion methods it is possible to buildboundedpartially specified
sets/lists, that is data structures with a certain numbéeittier known or unknown)
elementsy, ..., e,, and an unknown “rest” part, represented by an uninitidlizet/list
r (i.e., using the abstract notatiof¥;, ..., e, | 7} or [e1,. .., e, | r] for sets and lists,
respectively).

Example 2 Set/List element insertion and removal

Lst nil = Lst.empty; 1 the empty list
Lst 11 = nil.ins1(3+2).ins1(x);

/I the p.s. list [x,5]

/I (X uninitialized var.)
Lst 12 = Il.extl(y).insn(y);

/I the p.s. list [5,X]

/I (y uninitialized var.)
Set s1 = Set.empty.ins(1).ins(’a’);

/I theset{’a’,1}
Set r = new Set(); 1 an uninitialized set
Set s2 = r.ins(1); 1 the unbounded sdtL | r}

! Extraction methods for lists require that the invocaticst li is initialized and thatx is
not initialized. If one of these conditions is not respectdexception is raised (namely,
NotlnitVarException and InitLvarException , respectively). Moreover, if is
the empty list, &EmptyLstException exception is raised.

235

Note thats2 in the above example is a partially specified set containimg ele-
ment,1, and an unknown part; in this case, the cardinality of the denoted set has no
upper bound (the lower being.

Special forms of the insertion and extraction methods aveiged to simplify their
usage. In particular, the methats1All(a) , applied to a list , wherea is an array
of elements of a typég returns a list obtained frorh by adding all elements & as
the head elements of, respecting the order they havean Similarly, insAll(a) ,
applied to a se$, is used to insert more than one element at a timesnta addition,
an alternative form is provided for specifying the value éoset or list object. When
creating the object it is possible to specify the limitand » of an interval[l, u] of
integers: the elements of the interval will be the elemefth® set/list (ifu < [the
set/list is empty).

A number of utility methods are also provided by claskear , Lst , andSet .
These methods are used, for example, to print a set/listplbgeknow whether a logical
variable is initialized or not, to get the external name agged with aLvar , Lst , or
Set object, and so on.

Logical variables, sets, and lists are used mainly in castjan with constraints.
Constraints are addressed in more details in the next sectio

4 Programming with (Set) Constraints

Basic set-theoretical operations, as well as equalitidsraqualities, are dealt with as
constraintsn JSetL. The evaluation of expressions containing suchatioas is carried
on in the context of the current collection of active conistieC (the globalconstraint
storg) using domain specific constraint solvers. Those partsasfdlexpressions, usually
involving one or more uninitialized variables, which cahbe completely solved are
added to the constraint store and will be used to narrow thefsmssible values that
can be assigned to the uninitialized variables.

4.1 JSetL constraints

The JSetLconstraint domains the SE7 domain defined in [6], extended with a few
new constraints over lists and integers. &iomic constrainbf this domain is an ex-
pression of one of the forms:

- 61-010(62)
— e1.0p (€2, e3)

whereop is one of a collection of predefined methods provided by elslsgar , Lst
andSet , andey, e; andes are expressions whose type dependsarMore precisely,
let/, r beLvar expressionss, si, so, s3 Set expressions,, I list expressions, and, i,
integer expressions. JSetL provides the following atoraitstraints:

l.eq (7) (equality) for comparing.var values;

L.in (s) (membership)s; .subset (s2) (subset),s;.union (s2, s3) (union, i.e.val(s;) =
val(s2) U wal(ss))), s1.inters (sq, s3) (intersection), and a few other basic set-theoretic

236

operations, for dealing with sets;
ir.le (iz) (<), i1.ge (i2) (>), ..., for comparing integer values.
Moreover, for most of them, also their negative countegpare providedi.neq (1)
(inequality),.nin (s) (not membership); .nsubset (s2) (not subset), and so on.

If an expressiomr; of an atomic constraird .op (e, e3) (Or e1.0p (e2)) is evaluated
to a value of the wrong type, a suitable exception is raisethéyonstraint solver.

A constraintis either an atomic constraint or (recursively) the confiamcof two
or more atomic constraints, cs,. .., c,:

— ¢.and (¢2)and (¢,)

Example 3 JSetL constraints
Letx,y, z be logical variables and, s, andt be sets.

r.eq(s); I equality between sets
t.union(r,s); /It =rus
x.eq(y).and(x.eq(3)).and(y.neq(z))

II'x =yAX=3Ay#zZ

Note that solving an equality constraint implies the apiid solve aset unification
problem (cf., e.g., [7]). Set unification of two (possiblyrfially specified) sets andr
means finding an assignment of values to uninitialized Wdemoccurring in them (if
any), such that and r become equal in the underlying set theory. Intuitively, ity a
reasonable set theory, two sets are equal if they have the slEements, disregarding
their order and possible repetitions. Thus, for instarfeeset unification problem

{x,y} = {152}

wherez andy are uninitialized logical variables, admits two solutioassignl to z
and2 to y, or assigr2 to z and1 to y.

4.2 Constraint solving

The approach adopted for constraint solving in JSetL is the developed for
CLP(SET) [6]. Logically, the constraint store is a conjunction adic formulae built
using basic set-theoretic operators, along with equality imequalitie. Satisfiability
is checked in a set-theoretic domain, using a suitable cainssolver which tries to
reduce any conjunction of atomic constraints to a simplif@th—thesolved form—
which is guaranteed to be satisfiable. The success of thigtied process allows one
to conclude the satisfiability of the original collection @fnstraints. Conversely, the
detection of a failure (logically, the reduction false) implies the unsatisfiability of
the original constraints. Solved form constraints areilethe current constraint store
and passed ahead to the new state. A successful computhgoefpre, may terminate
with a not empty collection of solved form constraints in fimal constraint store.

The JSetL constraint solver basically implements in Jaeactimstraint solver of
CLP(SET), extended with simple constraints over integers. Sugtadstrictions, how-
ever, are imposed on the latter so that they can be alway@elied. Namely, expres-
sionse; and e in e1.op (e2), Whereop is an integer comparison operator, can not

237

contain any uninstantiated variable when they are evalyatberwise an exception is
raised? Therefore, since the constraint solver of CSEB() is proved to be complete
(as well as correct and terminating) [6], the same holds falsthe JSetL constraint
solver.

To add a constrainf’ to the constraint store, theeld method of theSolver class
can be called as follows:

Solver.add(C)

The order in which constraints are added to the constraone $6 completely im-
material. After constraints have been added to the stoe¢can invoke their resolution
by calling thesolve method:

Solver.solve()

The solve method nondeterministically searches for a solution thétfes all
constraints introduced in the constraint store. If thermisolution &ailure excep-
tion is generated. We say that the invocation of a methotinggUirectly or indirectly)
thesolve method, terminates witfailure if its execution causes th&ilure excep-
tion to be raised; otherwise we say that it terminates witbcessThe default action
for this exception is the immediate termination of the cotrtaread. The exception,
however, can be caught by the program and dealt with as peefer

To find a solution, the constraint solver tries to reduce then& constraints in the
constraint store to a simplified form - called thalved fornm(see [6]). This reduction is
nondeterministicNondeterminism is handled through choice points and backing.
Once the constraint reduction process detects a failueecdmputation backtracks to
the most recently created choice point (chronological tracking). If no choice point
is left open the whole reduction process fails (i.e., Hadlure exception is gener-
ated).

Example 4 Constraint solving

Lets be the sef{x,y,z }, wherex, y, z are uninitialized logical variables, and be
the set{1,2,3 }.

Solver.add(r.eq(s)); 1 set unificatiorr = s
Solver.add(x.neq(1)); // x #1

Solver.solve(); I calling the constraint solver
x.output();

x.output() prints the (external) name of the variab{dollowed by its value (if any;
otherwise, followed by _"). Therefore the output generated by this code fragment is:

X =2

2 Actually, the new version of the CLBET) solver [4], which integrates th8£7 solver with
an efficient solver ovefinite domaingF D), is able to deal with basic operations over integers
as constraints with almost no restriction on the instaiotiadf expressions that can occur in
them. Following the same approach, and extending the J®eitr@int solver accordingly, it
would allow us to deal with arithmetic constraints with netrections also in JSetL.

238

In the above example, the value foris computed through backtracking. Solving
the set unification probledx, y,z} = {1, 2, 3} nondeterministically returns one of the
six different solutions:

x=1Ly=22=3 ,

x=1Ly=3 z=2 ,

XxX=2,vy=32z=1 ,...

and so on. Assuming the first computed value xois 1, then the other constraint,
x.neq(1l) , turns out to be not satisfied. Thus, backtracking forcestieer to find
another solution fok, namelyx = 2. In this case, the conjunction of the two given
constraints is satisfied, and the invocation of soédve method terminates success-
fully. If later on a new constraint, e.dx] # [2] , is added to the constraint store, and
the constraint solver is called again:

Solver.add(Lst.empty.ins1(x).neq(Lst.empty.ins1(2)));
nx #[2]

Solver.solve();
x.output();

the choice points left open by the previous call to the sodwerstill open and they are
explored by the new invocation. The output generated atrideoéthe computation of
this new fragment of code is therefore:

X =3

Note that every time theolve method is invoked it does not restart solving the
constraint from the beginning but it restart from the pog#ched by the last invocation
to solve .

At the end of the computation the constraint store may corgalved form con-
straints. To print these constraints, other than equaditstraints, one can use the static
methodshowStore() of classSolver (actually this method allows to visualize the
content of the constraint store at any moment during the coation).

JSetL provides also a more convenient way to introduce ni@me one constraint
at a time, through théorall method. Letx be an uninitialized variable§ a set
expression which is evaluated to a bounded&ed,constraint containing, andC; the
constraint obtained frond’ by replacing all occurrences &fwith elements of S. The
statement

Solver.forall(x, S, C)

adds the constrain€s to the constraint store, for each elemenof S. Logically,
forall(x, S, C) is the so-called Restricted Universal Quantifier (cf., ,e[6]):
Vz((z € §) — C) (see the sample program in Section 2 for a simple userafl).

It is common also to allovocal variablesy, ..., v, in C, which are created as
new for each element of the set (logicaf((z € S) — Juy1,...,y.(C)) that is
v1,-- -, Yo are existentially quantified variables). For this purpd&stL provides also
the method

Solver.forall(x, S, Y, ()

wherex, S, andC are the same as in the simpferall method, whileY is an array
of all the local uninitialized logical variableg, . . . , v, occurringinC' (see Example 6).

239

4.3 Programming with constraints

Let us see how the solver works on a number of simple exampdssibly involving
also constraints in the computed result.

Example 5 In difference

Check whether an elementbelongs to the difference between two seis,and s2
(i.e.,x € s1\s2) .

public static void in _difference(Lvar x, Set sl, Set s2)
throws Failure

Solver.add(x.in(s1));
Solver.add(x.nin(s2));
Solver.solve();

}

If the following code fragment is executed (for instancehemain method)

in _difference(x,s,r);
x.output();
Solver.showsStore();

ands andr are the set1,2 } and {1,3 }, respectively, anc is an uninitialized
variable, the output generated is:

X =2

Store: empty

Conversely, i§ is an uninitialized set, then executing the same programnfrent
as above, will produce the following output

X = unknown
s = {x|Set _1}
Store: x.neq(1) x.neq(3)

which is read ass can be any set containing the elemenand x must be different
from1 and3.

The ability to solve constraints disregarding the fact dagjivariables occurring in
them are initialized or not allows methods involving coastts to be used in a quite
flexible way, e.qg., using the same method both for testingcanagputing solutions This
flexibility strongly contributes to support a declarative@gramming style.

Example 6 All pairs

Check whether all elements of a seare pairs, i.e., they have the forixl,x2] , for
anyxl andx2.

public static void all _pairs(Set s) throws Failure
{
Lvar x1 = new Lvar();

240

Lvar x2 = new Lvar();
Lvar] Y = {x1x2 };
Lvar x = new Lvar();

Lst pair = Lst.empty.ins1(x2).ins1(x1);
Solver.forall(x,s,Y,x.eq(pair));
Solver.solve();

return;

}

Let sample _set be the sef{[1,3],[1,2],[2,3] }+. The following fragment of
code tests whethesample _set is composed only of pairs and prints a message
“All pairs” or “Not all pairs” depending on the result of the test.

boolean res = true;

try {
all _pairs(sample _set);

catch(Failure e)

{res = false; }
if (res) System.out.print("All pairs");
else System.out.print("Not all pairs");

Example 6 shows also how a statement, naraltly_pairs(sample _set) , can
be used, in a sense, as a condition. In fact, if executioneostatement fails (i.e., not
all elements in the given set are pairs), then an exceilure is raised and the
associated exception handler executed. The latter caly sasia boolean variable to
be used in the next statement. Thus, if the statement terminates with sucbessa
true value is returned (imes); otherwise, the statement terminates with failure and
afalse value is returned. This is analogous to the use of statenasnéxpressions
found in some languages, such/ma-0 [1] and SNGLETON [15].

Constraints and other JSetL facilities can be used in catijum with the usual
control structures of Java. This situation is illustratgdhe following example.

Example 7 Symmetrical list

Check whether a lidt is symmetrical or not.

public static boolean symmetrical(Lst 1)
throws Failure

{
try {
while(l.size()>1)
Lvar z1 = new Lvar();
Lvar z2 = new Lvar();
Lst r = lLextl(zl).extn(z2);

/I extract the first and last elementlof
Solver.add(z1.eq(z2));

/I the first and the last elem’s

/I must be equal

241

Solver.solve();
I =

/I continue with the rest df
}

return true;

}

catch(Failure e)

{

return false;

}
}

If, for example, | is [r,/a'/’d, a’,'r] the value returned by
symmetrical s true. List | can contain also some unknown values. For exam-
ple, withl = [x,1,3,y,2] , X and y uninitialized variables, invocation of the
symmetrical method returnsrue and as a side-effect it initializes variablesandy

to 2 and1, respectively. Note that within thvehile loop we use an assignment between
two logical variables] = r : this forcesl at the next iteration to be replaced by the
new (shorter) list .

5 Nondeterminism

A computation in JSetL can be nondeterministic, though etgrdninism in JSetL is
confined to constraint solving. Precisely, like iN8LETON, nondeterminism is mainly
supported by set operations. As a matter of fact, the notisondeterminism fits into
that of set very naturally. Set unification and many othemgerations are inherently
and naturally nondeterministic. For example, the evatueatif z € {1,2,3} with z an
uninitialized variable, nondeterministically returnseoamongr = 1,z = 2, z = 3.
Since the semantics of set operations is usually well utal@isand quite “intuitive”,
making nondeterministic programming the same as progragpvith sets can con-
tribute to make the (not trivial) notion of nondeterminisas&r to understand and to
use.

Nondeterminism is another key feature of a programming uagg to support
declarative programming. A simple way to exploit nondeteism in JSetL is through
the use of theSetof method. This method allows one to explore the whole search
space of a nondeterministic computation and to collectarget all the computed solu-
tions for a specified logical variable Then the collected set can be processed, e.g., by
iterating over all its elements using tfezall method.

Example 8 All solutions
Compute the set of all subsets (i.e., the powerset) of a gieen

public static Set powerset(Set s) throws Failure

{

Set r = new Set();
Solver.add(r.subset(s));
return Solver.setof(r);

}

242

If s is the set{’a’,’b’ 1, the set returned bpowerset is {{}, {'a’ }, {’b’" },

fa).

As a more comprehensive example, using nondeterminismetrabastraints, we
show a possible JSetL solution to the well-known combinakproblem of the coloring
of a map.

Example 9 Coloring of a map

Given a map of: regionsr,...,r;,, and a set ofn colors ¢y,...c,,, find an assignment of
colors to regions such that neighboring regions have diff¢icolors.

The regions are represented by a setafninitialized logical variables and the col-
ors by a set ofn constant values (e.gf;red","blue" 1). The map is modeled by an
undirected graph and it is represented as a set whose elsmaemsets containing two
neighboring regions. At the end of the computation elachr representing a region

will be initialized with one of the given color.

public static void coloring(Set regions,
Set map,
Set colors)
throws Failure

{

Lvar x = new Lvar();

Set single = Set.empty.ins(x);
Solver.add(regions.eq(colors));
Solver.forall(x,colors,(single.nin(map));
Solver.solve();

return;

}

The solution uses a pure “generate & test” approach. Hegions = colors con-
straint allows us to find a valuable assignment of colors giass. Invocation of the
forall method allows us to test whether the constrdin} ¢ map holds for all x
belonging tocolors . If it holds, it means that for no paifr;, r; } in map, r; andr;
have got the same color.

If coloring is called withregions = {r1,r2,r3 },rl,r2,r3 uninitial-
ized logical variablesmap = {{r1,r2 }, {r2,r3 }}, andcolors = {"red",
"blue" 1}, the invocation terminates with success, afd r2 , r3 are initialized to
"red" ,"blue" ,and"red" ,respectively (actually, also the other solution which ini
tializesrl , r2 ,r3 to"blue" ,"red" ,and"blue" |, respectively, can be computed
through backtracking, if the first computed solution turo$ t cause a failure).

Note that the set of colors can be also partially specifiedeample, icolors =
{c1,"blue" },withcl an uninitialized variable, executirgploring will generate
the constraint:
rl =Lvar _1,r2 =blue ,r3 =Lvar _1, Lvar _1.neq(blue)

243

6 Defining new constraints

Nondeterminism in JSetL is confined to constraint solvinge@onsequence of this is
that backtracking allows the computation to go back to theres open choice point
within the constraint solver, but it does not allow to “resente” user program code.
For example, let us consider the following program fragmetiere we assume that
is the set{0,1 }, andc¢;, c2 are two constraints:

Solver.add(x.in(s));

Solver.solve();

if (x.value().equals(new Integer(0)) Solver.add(a);
else Solver.add(¢2);

If, when evaluating théf condition, the value of the logical variabkeis O then the
constrainte; is added to the constraint store. If, subsequently, a filsrdetected,
backtracking will allow to consider a different value fornamelyl, but theif condition
is no longer evaluated. The constraint solver will examkmee ¢onstraint store again,
with the new value fok but still with constraini; added to it.

Basically the problem is caused by the fact that we cannotagiiee a tight inte-
gration between the constraint solver (which is defined iibi@ty) and the primitive
constructs of the language. This is probably the main difiee between what we called
the “library” approach and the approach based on the deimdf a new language (or
the extension of an existing one). As a matter of fact the lerafillustrated by the above
program fragment is easily programmed in a language suchngs 8TON where non-
determinism and logic variables are embedded in the largguag

However, JSetL provides a solution to overcome this difficdlhe solution is based
on the possibility to introduce user-defined new constsaMthenever a method which
the user wants to define requires some nondeterministioraetinbedded in a non-
trivial control structure, one can define the method as a r@wsteaint, so that its exe-
cution is completely performed in the context of constramiving.

User-defined constraints are defined as usual Java methoejst¢ixat:(i) they are
all declared within a class namédewConstraints ; (i) they can use the JSetL
facilities for handling nondeterminism. To make the usehefise facilities simpler, we
assume a special construct is provided (similar to thatddaninstance in Alma-0 [1]):
eitherS; orelses, ...orelses,, whereS,. .. S, are Java statements. The logical mean-
ing of the either-orelseconstruct is the disjunctiog;V,...,v S,, while its computa-
tional interpretation is that of exploring, through baektking, all possible alternatives
S1,... Sy, Starting froms; . Actually this construct is easily replaced by usual Jawdeco
endowed with JSetL facilities for handling nondetermini@ae Appendix A for an
example). This replacement can be performed automatittathyigh a straightforward
preprocessinghase that takes the extended Java code dfiéveConstraints class
as its input and it generates the corresponding standaaccale.

Let us see how the user can define a new constraint using aesempmple: a
fully nondeterministic recursive definition of the clasditist concatenation operation
(concat). The solution, however, can be easily generalized to athses.

class NewConstraints

244

{

public static void concat(Lst 11, Lst 12, Lst I3)
throws Failure

{
either
{
Solver.add(I1.eq(Lst.empty));
Solver.add(I12.eq(13));
}
orelse
{
Lvar x = new Lvar();
Lst Ilnew = new Lst();
Lst I13new = new Lst();
Solver.add(I1.eq(l1new.ins1(x)));
/1 =[x | 11new]
Solver.add(I13.eq(I3new.ins1(x)));
1113 =[x | 13new]
Solver.add(concat(l1new,|2,I3new));
/I concat(l1new,12,I13new)
}
return;
}

}

The methodtoncat takes three lists as its parametdis; 2 andI3 . I3 is the
concatenation ot andl2 . concat can be used both to check if a given concatena-
tion of lists holds and to build any of the three lists, givew af the other two (as usual,
forinstance, in Prolog). Such flexibility is obtained byngsunification (instead of stan-
dard assignment) and nondeterminism (instead of a detestioiifi statement). Nonde-
terminism is implemented through théher-orelseconstruct: the first alternative states
that whenll is the empty list]2 andI3 must be equal; the second alternative deals
with the case in which the first elementlaf is x so thatl3 is obtained by inserting
x as the head element of the li8nhew which is obtained (recursively) by concate-
nating the rest ofL (i.e.,lI1lnew) with 12 . The actual Java code that implements the
new constraintoncat (generated through preprocessing of M@wvConstraints
class) is shown in Appendix A.

Execution of the statement
Solver.add(NewConstraints.concat(l1,12,13))

causes the user-defined constraiomcat to be added to the current constraint store.
If, forinstance)1 is[1,2,3] ,12 is[4,5] ,andI3 isan uninitialized list, a subse-
quent call taSolver.solve() will setl3 equal to[1,2,3,4,5]

As an example of the possible different usagesasfcat we show a completely
declarative version of a method for checking the subligttieh.

Example 10 Sublist relation
Check whether a ligh is a sublist of a liss and return the positiok wherep starts.

245

public static void prefix(Lst 11, Lst [2)
throws Failure

{

Lst | = new Lst();
Solver.add(NewConstraints.concat(I1,1,12));
Solver.solve();

return;

}

public static int sublist(Lst p, Lst s)
throws Failure

{

Lst A = new Lst();

Lst B = new Lst();

prefix(A,s);
Solver.add(NewConstraints.concat(A,p,B));
prefix(B,s);

Solver.solve();

return A.size()+1;

}

whereA.size() vyields the number of elements of the list denoted\byhe first
invocation of theprefix ~ method insublist allows us to compute (nondeterminis-
tically) a possible prefiXA of s, while the second invocation of tipeefix ~ method is
used to check whether the computed sulilist a prefix ofs. If this is not the case, a
different value forA is attempted next.

As an example, § is the list[1,1,3,1,4,5,1,2,1,1,1,4] andp is the list
[1,2,1] the invocation oublist will return 7 as its result.

7 Conclusions and future work

We have presented the main features of the JSetL library antubwe shown how they
can be used to write programs that exhibit a quite good detdlarreading, while main-
taining all the features of conventional Java programsaltiqular we have described
the (set) constraint handling facilities supported by dwary and we have shown how
constraint solving can be accomplished, and how it intsraath the usual notion of
program computation. Furthermore we have shown how to @pémdeterminism,
possibly by introducing new used-defined constraints.LJ&etully implemented in
Java and is available at URkww.math.unipr.it/ ~gianfr/JSetL

All features provided by JSetL are present also in the GIEBY) language [6], but
embedded in a CLP framework. An attempt to “export” theséufies outside CLP is
represented by the definition of theN&LETON language [15], a declarative language
that combines most of the features considered in this pajplertraditional” features
of imperative programming languages, such as the iteratwérol structures and the
block structure of programsi$GLETON, however, is a completely new language, with
its own syntax and its own semantics. A possible side-efféthe current work on
JSetL is to allow us to compare the approach followedimcEETON with the library

246

based approach followed in JSetL, in order to evaluate theigdhe expressive power
related to the effort needed to develop the new facilitiebthe easiness to use them.

As a future work the constraint solving capabilities of ISetuld be strongly en-
hanced by enlarging the constraint domain from that of sethdt offinite domains
Following [4], this enhancement could be obtained by irdéigg an existing constraint
solver for finite domains, possibly written in Java, with #&etL constraint solver over
sets. As shown in [4] this would allow us to have, in many cagesefficiency of the
finite domain solvers, while maintaining the expressive @oand flexibility of the set
constraint solvers (which in turn is inherited from CIS(7)).

On a different side, another concrete improvement couldib&imed by using flex-
ible preprocessing tools for the Java language that woldgvals to develop suitable
syntax extensions that would make it simpler and more niisiiag the JSetL facilities.

8 Acknowledgments
The work is partially supported by MIUR projedsitomatic Aggregate—and number—

Reasoning for Computingnd CoVer—Constraint-based Verification of Reactive Sys-
tems

247

Bibliography

[1] K.R. Apt, J. Brunekreef, V. Partington, and A. Schaefdima-0: An imperative
language that supports declarative programmiAg:M TOPLAS 20(5), 1014—
1066, 1998.

[2] A.Chun. Constraint programming in Java with JSolverPhoc. Practical Appli-
cations of Constraint Logic Programming, PACLR9999.

[3] A.Courtney. Frappé: Functional reactive programnmiimgdava. InPractical As-
pects of Declarative Languages, PADL 20QNCS, Vol. 1990, Springer-Verlag,
29-44,2001.

[4] A. Dal Palu, A. Dovier, E. Pontelli, and G. Rossi. Intaging Finite Domain
Constraints and CLP with Sets. RPDP’03 — Proc. of the Fifth ACM SIGPLAN
Conference on Principles and Practice of Declarative Peogming ACM Press,
219-229, 2003.

[5] E.Denti, A.Omicini, and A.Ricci. tu Prolog: a light-weight Prolog for internet
applications and infrastructures. Rractical Aspects of Declarative Languages,
PADL 2001 LNCS, Vol. 1990, Springer-Verlag, 184-198, 2001.

[6] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets amtstraint logic program-
ming. ACM TOPLAS$22(5), 861-931, 2000.

[71 A. Dovier, E. Pontelli, and G. Rossi. Set unification. TF-001/2001, Dept. of
Computer Science, New Mexico State University, USA, Janc@01 (available
atwww.cs.nmsu.edu/TechReports).

[8] M.Dincbas, P.Van Hentenryck, H.Simonis, et al. The d¢aaist logic program-
ming CHIP. InProc. of the 2nd Int’l Conf. On Fifth Generation Computeri®yss
683-702, 1988.

[9] ECLIiPSe, User Manual. Tech. Rept., Imperial Collegendlon. August 1999.
Available atwww.icparc.ic.ac.uk/eclipse

[10] G.Falkman, O.Torgersson. Enhancing Usefulness ofldbative Programming
Frameworks through Complete Integration. Rroc. of the 12th Int. Workshop
on Logic Programming Environmentduly 2002 (available atittp://xxx.
lanl.gov/abs/cs.SE/0207054).

[11] E.Hyyonen, S.DePascale, and A.Lehtola. Interval trairg satisfaction tool
INC++. In Proc. of the 5th ICTAIIEEE Press, 1993.

[12] ILOG Optimisation Suite - White Paper. Available at
www.ilog.com/products/optimisation/tech/optimisatio n/
whitepaper.pdf

[13] G.Smolka. The Oz programming model.@urrent Trends in Computer Science
J. van Leeuwen, Ed., LNCS, vol. 1000, Springer-Verlag, 1995

[14] J.-F.Pugetand M.Leconte. Beyond the Glass Box: Caimras Objects. IRroc.
of the 1995 Int'l Symposium on Logic ProgrammitjT press, pp. 513-527.

[15] G.Rossi. Set-based Nondeterministic DeclarativegRomming in SINGLETON.
In 11th Int.I Workshop on Functional and (constraint) Logi@Bramming Elec-
tronic Notes in Theoretical Computer Science, Vol. 76, #kseScience B. V., 17
pages, 2002.

248

[16] I.Shvetsov, V.Telerman, and D.Ushakov. NeMo+: Objegénted constraint pro-
gramming environment based on subdefinite modelArtificial Intelligence and
Symbolic Mathematical Computatiof&.Smolka, ed.), LNCS 1330, Springer-
Verlag, 534-548.

[17] Neng-Fa Zhou. DJ: Declarative Java, Version 0.5, Wseranual. Kyushu In-
stitute of Tecnology, 1999. Available atww.cad.mse.kyutech.ac.jp/
people/zhou/dj.htim

[18] Neng-Fa Zhou. Building Java Applets by using DJ—a Jaasdsl Constraint Lan-
guage. Available atvww.sci.brooklyn.cuny.edu/ ~zhou .

A Implementing user-defined constraints

In this section we present the actual code used to implerhentder-defined constraint
concat .

class NewConstraints

{

public static StoreElem concat(Lst 11, Lst 12, Lst I3)
{
StoreElem s = new StoreElem(n,I1,12,I3);
return s;
}

protected static voidusercode(nt c, StoreElem s)
throws Failure

switch(c)

{.

case n: concat(s); break;

3

return s;

}

public static void concat(StoreElem s)
throws Failure

{
Lst 11 = (Lst)s.argl;
Lst 12 = (Lst)s.arg2;

Lst 13 =(Lst)s.arg3;
switch(s.caseControl)

{

case 0O:
add _ChoicePoint(s);
add(l1.eq(Lst.empty));
add(12.eq(I13));
return;

case 1:

249

Lvar x = new Lvar();
Lst I[lnew = new Lst();
Lst I3new = new Lst();
add(l1.eq(I1lnew.ins1(x)));

/11 =[x | 11new]
add(13.eq(I3new.ins1(x)));

/113 =[x | 13new]
add(concat(Ilnew,I2,I3new));

/I concat(l1new,|2,I13new)
return;

}

The first definition of theconcat method creates a new instance of the class
StoreElem which is used to store the new constraint within the constrsiore.
The instance contains all parameters for dwmcat method, along with an inte-
ger n which will be used by the solver to uniquely identify the neanstraint. The
user _.code method is used to associate each internal code with the spamneing
method that implements the user-defined constraint (nanieysecond definition of
theconcat method in this example). The control expression ofgivitch statement
is thecaseControl attribute of the constraint stoseassociated witltoncat (de-
fault value: 0). Eacltase block, but the last one, creates a choice point and adds it to
the stack of the alternatives by executing the statermédtChoicePoint(s) ; then
the remaining code of thease block adds the constraints necessary to compute one
of the possible solutions.

250

SML2Java: A Source to Source Translator

Justin Koser, Haakon Larsen, and Jeffrey A. Vaughan

Cornell University

Abstract. Java code is unsafe in several respects. Explicit null eefags and
object downcasting can cause unexpected runtime errors.also lacks pow-
erful language features such as pattern matching and Fass$-éunctions. How-
ever, due to its widespread use, cross-platform compi@fikahd comprehensive
library support, Java remains a popular language.

This paper discusses SML2Java, a source to source tran8db2Java oper-
ates on type checked SML code and, to the greatest exteriblgpgzroduces
functionally equivalent Java source. SML2Java allows @mogners to combine
existing SML code and Java applications.

While direct translation of SML primitive types to Java piiiive types is not pos-
sible, the Java class system provides a powerful framewarkrhulating SML

value semantics. Function translations are based on aastilatsimilarity be-

tween Java’s first-class objects and SML’s first-class fonst

1 Introduction

SML2Java is a source-to-source translator from Standard3ML), a statically typed
functional language [8], to Java, an object-oriented iraplee language. A successful
translator must emulate distinctive features of one laggua the other. For instance,
SMLs first-class functions are mapped to Java'’s first-ctdgects, and an SML let ex-
pression could conceivably be translated to a Java inedactaining an ’in’ function,
where every let expression in SML would produce an anonymmiantiation of the
let interface in Java. Similarly, many other functionaltieas of SML are translated
to take advantage of Java’s object-oriented style. Bechussional features such as
higher-order functions must ultimately be implementedhgdirst-class constructs, we
believe one can only achieve a clean design by taking adgawmtthe strengths of the
target language.

SML2Java was inspired by problems encountered teachirgifural programming
to students familiar with the imperative, object-orienpedadigm. It was developed for
possible use as a teaching tool for Cornell's CS 312, a canifsactional programming
and data structures. For the translator to be a successfohtdnal tool, the translated
code must be intuitive for a student with Java experience.

On a broader level, we wish to show how functional conceptstzEmapped to
object-oriented imperative concepts through a thorougtetstanding of each model.
In this regard, it becomes important not to force functiawadcepts upon an imperative
language, but rather to translate these functional coadeptheir imperative equiva-
lents.

251

2 Translation

This section discusses the choices we made in our translatiSML to Java. Where
pertinent, we will also discuss the benefits and drawbacksipflesign decisions.

2.1 Primitives

SML primitive types, such asnt and string, are translated to Java classes. The
foregoing becoménteger2and String2 respectively. Ideally, SML primitives would
translate to their built-in Java equivalents (et — java.lang.Integey, but these
classes (e.gjava.lang.Integer do not support operations such as integer addition
or string concatenation [10]. We do not map directlyinb and string because Java
primitives are not derivatives @bject cannot be used with standard Java collections,
and are not compatible with our function and record traisiat The latter will be
shown in sections 2.2 and 2.4. Our classes, which are basddwanutil.*, include
necessary basic operators and fit well with function andreeranslation. While Hicks

[6] addresses differences between the SML and Java typensyshe does not discuss
interoperability. Blume [4] treats the related problemrafislating C types to SML.

Figure 1 demonstrates a simple translation. The astuteeremitl notice several
superfluous typecasts. Some translated expressions fprraalrn Object However,
because SML code is typesafe, we can safely downcast thésrebthese expressions.
The current version of SML2Java is overly conservative,iasdrts some unnecessary
casts. Additionaly, the add function looks quite compkehtThis is consistent with
other function translations which are discussed in se@idn

2.2 Tuples and Records

We follow the SML/NJ compiler (section 3) which compiles legdown to records.
Thus, every tuple of the forrtexpl, exp2, ..pecomes a record of the forfil=exp1,
2=exp2, ..}. This should not surprise the avid SML fan as SML/NJ will fe top level,
represent the recordl="hi", 2="bye” } and the tuple(*hi","bye”): string*string
identically.

The Recordclass represents SML records. Every SML record value mags to
instance of this class in the Java code. Reeordclass contains a private data member,
myMapping of typejava.util. HashMapSML records are translated to a mapping from
fields (which are of typ&tring) to the data that they carry (of tyj@bjec). TheRecord
class also contains a functiadd, which takes &tringand anObjectas its parameters
and adds these to the mapping. A record of lengthill therefore requiren calls to
add Record projection is little more than a lookup in the re¢okashMap

2.3 Datatypes

An SML datatype declaration creates a new type with one oemonstructors. Each
constructor may be treated as a function of zero or one argtsr@ML2Java treats this

252

N

©Coo~NOOUA, WN R

O©CoOoO~NOOOUODWNER

Fig. 1. Simple variable binding
SML Code:

val x=40
val y=2
val z=x+y

Java Equivalent:

public class TopLevel {
public static final Integer2 x = (Integer2)
(new Integer2 (40));

public static final Integer2 y
(new Integer2 (2));

(Integer2)

public static final Integer2 z = (Integer2)
(Integer2.add()).apply(((
(new Record())
.add("1", (x)))
-add("2", (¥))));

}
Fig. 2. Two records instantiated
SML Code:
val a = {name="John Doe", age=20}
val b = ("John Doe", 20)

Java Equivalent:

public static final Record a = (Record)
((new Record())
.add("name"”, new String2("John Doe")))
.add("age”, (new Integer2 (20)));

public static final Record b = (Record)
((new Record())
.add("1", new String2("John Doe")))
.add("2", (new Integer2 (20)));

253

model literally. An SML datatypedlt, with constructorgl, c2, ¢3 ...is translated to
a class. This class, also namgighas static methodsl, c2, ¢3 ... Each such method
returns a new instance df.

Thus, SML code invoking a constructor becomes a static ndethdl in the trans-
lated code. It is important to note that this process is difié from the translation
of normal SML functions. The special handling of type counstors greatly enhances
translated code readability.

A datatype translation is given in figure 3. As the SML langaegforces type
safety, constructor arguments can simply be t@igect Although more restrictive
types could be specified, there is little benefit in the commase where the type is
Record

2.4 Functions

In our translation model, thEunctionclass encapsulates the concept of an SML func-
tion. Every SML function becomes an instance of this clase JavaFunctionclass
has a single methodpply, which takes af®bjectas its only parameter and returns an
Object TheFunctionclass encapsulation is necessitated by the fact that insctire
treated as values in SML. As a byproduct of this scheme, fometpplications become
intuitive; any application is translated FunctionName.apply(argument)

At an early design stage, the authors considered trangkedich function to a named
class and a single instantiation of that class. While thidehprovides named functions
that can be passed to other functions and otherwise treatddta, it does not easily
accommodate anonymous functions. A strong argument focuhent model is that
instantiating anonymous subclassesFahction provides a natural way to deal with
anonymous functions.

We believe this is a sufficiently general approach, and cadleall issues with re-
spect to SML functions (including higher-order functiors)fact, every SML function
declaration (i.e. named function) is translatead, by th&.®M compiler, to a recursive
variable binding with an anonymous function. Therefore weatment of anonymous
functions and named functions mirror each other and thiflaiity lends itself to code
readability.

Other authors have used different techinques for creatingtions at runtime. For
example, Kirby [7] uses the Java compiler to generate bgeatynamically. While
powerful and well suited for imperative programming, thieoach is not compatible
with the functional philosophy of SML.

In figure 4, the lines that contain the word “Pattern” form fbandation of what
will, in future revisions of SML2Java, be fully generalizpdttern matching. Pattern
matching is done entirely at runtime, and consists of reeelys comparing compo-
nents of an expression’s value with a pattern. SML/NJ perfossome optimizations of
patterns at compile time [1]. However these optimizationes @ general, NP-hard [3]
and SML2Java does not support them. Currently patterns iani¢edl to records
(including tuples), wildcards and integer constants.

254

Fig. 3. A dataype declaration and instantiation

SML Code:
1 datatype qux = FOO | BAR of int
2
3 val myVariable = FOO
4 val myOtherVar = BAR(42)
Java Equivalent:
1 public class TopLevel {
2 public static class qux extends Datatype {
3
4 protected qux(String constructor){
5 super(constructor);
6 }
7
8 protected qux(String constructor,Object data){
9 super(constructor, data);
10 }
11
12 public static qux BAR(Object 0){
13 return new qux("BAR", 0);
14 }
15
16 public static qux FOO(){
17 return new qux("FOQO");
18 }
19
20 }
21 public static final qux myVariable = (qux)
22 qux.FOO();
23
24 public static final qux myOtherVar = (qux)
25 qux.BAR((new Integer2 (42)));
26
27 '}

255

BN

oO~NO UL WNE

Fig. 4. Named function declaration and application

SML Code:

val getFirst = fn(x:int, y:int) => x
val one = getFirst(1,2)

Java Equivalent:

public static final Function getFirst = (Function)
(new Function () {
Object apply(final Object arg) {

s

}

final Record rec = (Record) arg;

RecordPattern pat = new RecordPattern();
pat.add("1", new VariablePattern(new Integer2()));
pat.add("2", new VariablePattern(new Integer2()));
pat.match(rec);

final Integer2 x = (Integer2) pat.get("1");

final Integer2 y = (Integer2) pat.get("2");

return (Integer2) (x);

public static final Integer2 one = (Integer2)
(getFirst).apply(((
(new Record())

.add("1", (new Integer2 (1))))

.add("2", (new Integer2 (2)))));

256

=

~NOoO b wWNBRE

P OOWOO~NOOOUDWNE

2.5 Let Expressions

A Letinterface in Java encapsulates the SML concept of a let sgjore Theletin-
terface has no member functions. Every SML let expressi@ofes an anonymous
instantiation of thd_et interface with one member functiom. This function has no
parameters and returns whatever type is appropriate diesoriginal SML expression.
Thein function is called immediately following object instarticmn.

A different approach would be to have thet interface contain the functiom.
Here,in would have no formal parameters, and would returi®aject The advantage
to this would be its consistency with respect to our functiamslations (i.e. thapply
function), but a possible disadvantage is excessive tgpiecgawhich can greatly reduce
readability.

One might also attempt to separate thet declaration from the call to itén
function. If implemented in the most direct manner, such aehavould, like the
previous one, require that thet interface contain am function. This scheme would
improve code readability. However, as one often has sevatéxpressions in the
same name-space in SML, this model would likely suffer frdradowing issues.

Fig. 5. Let expressions are translated like functions

SML Code:
val x =
let
valy = 1
val z = 2
in
y+z
end

Java Equivalent:

public static final Integer2 x = (Integer2)
(new Let() {
Integer2 in() {
final Integer2 y = (Integer2) (new Integer2 (1));
final Integer2 z = (Integer2) (new Integer2 (2));
return (Integer2) (Integer2.add()).apply(((
(new Record())
-add("1", (y)))
} .add("2", (2))));
D-n();

257

2.6 Module System

Our translation of SML's module system is straightforwa8ML signatures are
translated to abstract classes. SML structures are ttaddlaclasses that extend these
abstract signature classes. A structure class only exgegilen signature class if the
original SML structure implements the SML signature. Stuoe declarations that are
not externally visible in SML (i.e. not included in the impiented signature) are made
private data-members in the generated Java structure diassis demonstrated in
figure 6.

3 Implementation

Our primary task was to translate high-level SML source dodegh-level Java source
code. As there are several available implementations of SilL.chose to use the front
end of one, Standard ML of New Jersey (SML/NJ) [9]. We use the=tbpment flavor
of the compiler §ml-full-cm) to parse and type-check input SML code. We then
translate the abstract syntax tree generated by SML/NJrtovani internal Java syntax
tree and output the Java code in source form.

Taking advantage of the SML/NJ type checker gives us a stgoagantee regard-
ing the safety of the code we are translating. To cite Dr. AndAppel, a program
produced from this code "cannot corrupt the runtime systerthat further execution
of the program is not faithful to the language semantics’ [2]other words, such a
program cannot dump core, access private fields, or misjgiestfor one another. It
would be interesting to investigate whether these factsibioed with the translation
semantics of SML2Java, imply that similar guarantees hottié generated Java code.

Other properties of the Core subset of SML are discussed bjngavegen [12].
Using HOL [5], she is able to prove, among other things, aeieism of evaluation.

4 Conclusion and Future Goals

The current version of SML2Java translates many core asetstof SML, including
primitive values, datatypes, anonymous and recursivetiums, signatures and struc-
tures. SML2Java succeeds in translating SML to Java codi& vaspecting the func-
tional paradigm.

Parametric polymorphism is a key construct that the authordd like to imple-
ment in SML2Java. Java 1.5 (due out late 2003) will direatiyport generics [11], and
we believe waiting for Sun’s implementation will facilaterierating clean Java code. In
addition, Java’s generics will resemble C++ templates,aandreatment of parametric
polymorphism should highlight the relative merits of eappmach.

We would like to add support for several less critical SML stoacts. Among these
are exceptions, vectors, open declarations, mutual necyfsinctors, and projects con-
taining multiple files. The majority of these should be impéntable without excessive
difficulty, and each is expected to be a valuable additionMih Slava.

258

Fig. 6. Translation of a signature and a structure
SML Code:

signature INDEX_CARD = sig
val name : string
val age : int

end

structure IndexCard :> INDEX_CARD = struct

val name = "Professor Michael Jordan"

val age = 31

val super_secret = "This secret cannot be visible to the outs
end

Java Equivalent:

public class TopLevel {
private static abstract class INDEX_CARD {
public static final String2 name = null;
public static final Integer2 age = null;

}
public static class IndexCard extends INDEX_CARD {
public static final String2 name = (String2)
(new String2 ("Professor Michael Jordan"));

public static final Integer2 age = (Integer2)
(new Integer2 (31));

private static final String2 super_secret = (String2)
(new String2 ("This secret cannot be visible to the outside"

259

ide"

)

5 Acknowledgements

This project was performed as independant research undegutdance of Dexter
Kozen, Cornell University. We would like to thank Profeskozen for many insightful
discussions and much valuable advice. We would also likbaok the following for
helpful advice: Andrew Myers, Cornell University, and Tdrarsen, Tromsg Univer-
sity.

260

Bibliography

[1] Aitken, William. SML/NJ Match Compiler Notdstp://www.smlnj.org/compiler-
notes/matchcomp.ps (1992)
[2] Appel, Andrew W. A critique of Standard MLhttp://ncstrl.cs.princeton.edu/
expand.php?id=TR-364-92 (1992)
[3] Baudinet, Marianne and MacQueen, Davitdee Pattern Matching for ML (ex-
tended abstrac)ttp://www.sminj.org/compiler-notes/85-note-baudipe (1985)
[4] Blume, MatthiasNo-Longer-Foreign: Teaching an ML compiler to speak C "na-
tively” Electronic Notes in Theoretical Computer Science 59 No0D{2
[5] Gordon, Melhanintroduction to HOL. A theroem proving environment for legh
order logicCambridge University Press, 1993
[6] Hicks, Michael. Types and Intermdiate Representatidirgversity of Pennsylva-
nia (1998).
[7] Kirby, Graham, et alLinguistic Reflection in Jav&oftware - Practice & Experi-
ence 28, 10 (1998).
[8] Milner, Robin, et al.The Definition of Standard ML - Revisgdumberland, RI:
MIT Press, 1997.
[9] SML/NJ Fellowship, TheStandard ML of New Jerséattp://www.sminj.org (July
29, 2003).
[10] Sun Microsystemslava 2 Platform, Standard Edition, v 1.4.2 API Specification
http://java.sun.com/j2se/1.4.2/docs/api/ (July 18,3)00
[11] Sun MicrosystemsJSR 14 Add Generic Types To The Java Programming Lan-
guagehttp://www.jcp.org/en/jsr/detail?id=14 (July 24, 2003)
[12] Vaningwegen, MyraTowards Type Preservation for Core SMitp://www.myra-
simon.com/myra/papers/JAR.ps.gz

261

262

Constraint Imperative Programming with C++

Olaf Krzikalla

Reico GmbHkrzikalla@gmx.de

Abstract. Constraint-based programming is of declarative natureblBm so-
lutions are obtained by specifying their desired propsrtighereas in imperative
programs the steps that lead to a solution must be definedigyplThis paper
introduces the Turtle Library, which combines constrdiased and imperative
paradigms. The Turtle Library is based on the language d[ditiand enables
constraint imperative programming with C++.

1 Constraint Imperative Programming at a Glance

In an imperative programming language the programmer teschow a solution for
a given problem has to be computed. In contrast to that, inckadive language the
programmer specifies what has to be evaluated. Constraggebprogramming is a
rather new member of the declarative paradigm that was fegeldped from logic
programming languages. In constraint-based programrhiegptogrammer describes
the solution only by specifying the variables, their prdjgsrand the constraints over
the set of variables. Actually, no algorithms have to betemit The compiler and run-
time environment are responsible for providing appropragorithms and eventually
obtaining a solution.

Meanwhile, constraint-based programming has been extdngdeoncepts of other -
mostly declarative - programming languages. However, tielination of imperative
and constraint-based languages is far less explored. Bparnd Freeman-Benson[2]
introduced the term ’constraint-imperative programmiagd developed the language
Kaleidoscope[3], combining constraint and object-ogenprogramming. But object-
orientation is no precondition for constraint-imperagiregramming. This paper deals
with more fundamental problems of the integration of caxists and constraint solvers
in imperative language concepts. This integration prosnésene advantages. Impera-
tive programming is a well known paradigm, which is intuiiy understood by most
programmers. A lot of efficient and industrial-strength @mgtive languages exist.
However, an imperative program for a difficult algorithm @ngetimes very cumber-
some. Especially for this sort of problems declarative legges have proven their
power. Constraint programming enables the programmereoifgprequired relations
between objects directly rather than to ensure these gakathy algorithms only. So
constraint programs not only often become more compact eadable, but also less
erroneous than their imperative counterparts.

Constraint imperative programming tries to combine theaatiges of constraint-
based and traditional imperative programming. A recenelimment in this field is the
language Turtle, a constraint imperative programming Uaigg developed by Martin
Grabmiller at the Technische Universitat Berlin. Basedh® ideas presented in [1] |
developed the Turtle Library, a constraint imperative paogming approach in C++.

263

2 The Basic Concept of Turtle

The fundamental difference between imperative and dealalanguages is the model
of time. In pure declarative languages a timing model singags not exist - compu-
tations are specified independent of time. On the other remdnperative language
always describes transformations of a given state at omd jpdiime to another state at
the next point in time. Computations are specified by seqgeatstatements.

Whenever declarative and imperative languages are cochbame of the main is-
sues is the interaction of the integrated declarative qoiscgith the imperative timing
model. In Turtle this is solved by introducing a lifetime fmnstraints and the statement
require, which defines a constraint:

require constraint;

When arequireis reached during the execution of the program, the givestcaimt
is added to a global constraint store and taken into accauimgifurther computations
- its lifetime starts. A constraint doesn’t exist (and theteyn doesn’t know anything
about it) until the correspondimgquire-statement is executed. Eventually a sequence
of require-statements form a conjunction of the appropriate condgai the constraint
store. Constraints in the constraint store are considertcka

Of course, if a constraint starts to exist at a certain timalsio can be removed at a
certain time:

require constraint in
statement;

end;

The given constraint exists only between thandend When the program reaches
the end statement (or otherwise leaves the block), the constrairgrhoved from the
constraint store - its lifetime ends. After this the conisir&sn’t active any longer.

In order to deal with over- and underconstrained problenmsitaints need to be
labelled with strenghts to form a constraint hierarchyoAth a constraint imperative
system without constraint hierarchies could be desigriedisefulness would be dras-
tically reduced, because it would be difficult to constraamiables while the program
dynamically adds or removes constraints. In Turtle eaclsttaimt can have a strength
annotation in its definition:

264

require constraintl : strong;
require constraint2 : mandatory;

When a constraint is annotated with a strength, it is add#tktetore with the given
strength, otherwise with the strongest strengtindatory This strength was specified
in the previous example for clarity only.

Constraints are defined on constrainable variables. Mdaseaime a constrainable
variable acts like a normal variable: it can be used in exgloes and as a function
argument. Only in a constraint statement they differ fromirttmormal counterparts.
A normal variable is treated like a constant, but a consatam variable acts like a
variable in the mathematical sense, and the constrainesatay change its value in
order to satisfy all constraints existing at this point iméi.

var x : int; // a normal variable

vary : !int; // the exclamation defines a constrained varabl
X :=0;

require y<=xin

... Il during the execution of this block Turtle ensures0
end;

Constraints in Turtle are boolean expressions. During ¥eewgion of arequire
statement the constraint solver computes a certain valuesith constrained variable,
such that all active constraints evaluate to true. Comgare handled strictlgager
Changing a non-constrained variable after it was used innstcaint doesn’t affect
the constraint store. Whenever the program reads a camstirgariable, the value last
computed by the solver for this variable is supplied. An @tios is raised, if it isn’t
possible to satisfy all mandatory constraints during thexation of aequirestatement.

In Turtle constraints can be used for computing solutiorns ¢ertain problem like
other constraint programming approaches. But they arémibéd to this usageequire
statements introduce conditioaspriori, which are maintained automatically by the
constraint solver. Hence backtracking like in approachi#s & posterioritests (e.qg.
Alma-0[6]) is not neccessary. Due to tagriori nature of constraints in Turtle they can
be used to describe and preserve program invariants or - georeral - to express in
declarative manner the meaning of an otherwise imperativgram without disrupting
the familiar execution flow.

3 ATurtlein C++

The concepts of Turtle were first implemented in a languageldped from scratch.
This approach was chosen because some other features dikertarder functions
should also be integrated. And a new language seemed to lm#hehoice for the
seamless combination of imperative, functional and cairgtprogramming. However,
a new language is always in a difficult position. The knowkdgse is small, tools
don'’t exist, and further development is sometimes driveadgdemic interests only.
All concepts of Turtle related to constraint programming also implementable in
C++. Thats why | think a Turtle Library written in pure C++ 8es both the widespread-
ing and further development of Turtle better. In the reces#rg a lot of developments

265

- especially on the field of generic programming in C++ - madgoissible to move
almost all concepts from the Turtle language to the C++ @urtbrary without any
losses. Furthermore, the generic approach of the Turtleabyjtenables every user to
add, change or optimize constraint solvers at will. Thissigezially important for user-
defined domains and offers a wide application field for thetl@uribrary. The Turtle
Library might be used to solve operational research problento program a graphi-
cal user interface. Both problems are typical constraiobf@ms. In the first problem
constraint programming is used only to obtain a solutiorichvleften can be done in a
constraint logic language too (given an appropriate laggwand - more important - an
appropriate programmer) or by using a rather imperativeagah[5]. But for the sec-
ond problem constraintimperative programming really ekiThe 'canonical’ example
is a graphical element, which can be dragged by the mousdeiegirtain borders[4].
The imperative approach looks like this:

void drag ()

while (mouse.pressed) { //message processing is left out
int y = mouse.y;
if (y > border.max)
y = border.max;
if (y < border.min)
y = border.min;
draw_element (fix_x, y, graphic);
}
}

Using the Turtle Library the example would look as follows:

void drag ()
{

constrained<int> y;
require (y >= border.min && y <= border.max);
while (mouse.pressed) {
y = mouse.y;
draw_element (fix_x, y(), graphic);
}
}

The above is not only shorter, but expresses the relationdaet the border-object
and the y-coordinate in exactly the way a programmer wouittktabout it.

3.1 Constrained Variables

A constrained variable is of the generic typenstrained . A constrained variable
has identity semantics, the copy constructor and standargranent operator aren’tim-
plemented. If they are needed, an appropriate wrappeiesference counted pointer)
has to be defined. The public interface given here is destibéetail in the following
sections.

266

template<class T>
class constrained

{
public:
constrained (const T& prefer = T());
constrained<T>& operator= (const T& prefer);
“constrained ();
T operator ()() const throw (overconstrained_error, ...);
const T& preferred() const;
void unfix() const;
h

The template parameter specifies the value type of the vVaritmight be a fun-
damental type likent or double or an user-defined class. Domains are formed by
non-intersecting sets of value types and for each domaip@mariate constraint solver
has to be provided. Thus each value type is unambiguouslytbima constraint solver.
However Turtle can be used for hybrid domains, because tedace enables the im-
plementation of a constraint solver responsible for moaa thne value type.

3.2 Declaring Constraints

Constraints can be declared as straightforward as presintiee section 2:

constrained<double> a, b;

double ¢ = 2.0;

require (a >= 0.0);

require (a <= b && a + b <= ¢);

The composition of the boolean expression insidecpiire is done using opera-
tor overloading and expression template techniques. Wipehators are supported for
a certain value type is defined by the domain and the avaitavistraint solver. E.g. it
is rather pointless to support< or!= for floating point values In domains other than
the algebraic ones it’s often better to avoid otherwise rimgg@ss operator overloading.
For this purpose named predicates can be defined and useadnst

edge e =/ ... =/, [lcompute an edge
constrained<vertex> p;
require (point_on_edge (e, p));

The operato&& forms a conjunction of two expressions just like two subsedqu
requires, hence

constrained<double> a;
require (a >= 0 && a <= 2);

is equivalent to

! Due to the same reasons even the support of == could be argued.

267

constrained<double> a;
require (a >= 0);
require (a <= 2);

The operatof| defines a disjunction. A disjunction can be seen as a branah in
tree of solutions. Subseqent requires add their consérairgll leafs of the tree.

constrained<double> a, b;

require (a == 0 || a == 1);

require (b == a + 1);

/I the store now contains :

Il b==a+1& a==0)]| (b==a+1&& a==1)

The Turtle Library provides a simple generic algorithm fankling disjunctions.
A certain constraint solver may implement a more sophittapproach to compute
and maintain solution trees efficiently.

Constraint strengths can be given as a second argument.tioedéige in the Turtle
language:

require (a == b, weak);

Of course these values are only of interest if the underlgomgstraint solver sup-
ports hierarchic constraints.

The Turtle Library internally stores the constraints inesa¥ constraint sub-stores.
A constraint sub-store is defined as the set of all consta@wer a set of constrained
variables, where each variable of the set is linked to edoérafariable of the set. Two
variables x and y are linked, if they either both appear in @estraint or if x appears
in a constraint containing a variable linked to y.

constrained<double> a, b;

require (a >= 0.0); // generate constraint sub-store 1

require (b >= 0.0); // generate constraint sub-store 2

require (a <= b); /I sub-store 1 and 2 are merged
Il together

The function templateequire returns a handle to manage the lifetime of the
constraint. If the return value is ignored, the imposed traird exists as long as all
constrained variables in this constraint:

constrained<int> a;
{
constrained<int> b;
require (a == b);
...
lNleaving the scope of b, hence a == b
/lis removed from the constraint store:

}

268

Otherwise, the lifetime of the constraint is also bound ®lifetime of the returned
constraint handle:

constrained<int> a, b;

{
constraint_handle<int> z = require (a == b);
/...

/Nleaving the scope of z, hence a ==

/lis removed from the constraint store:

}

Still, the constraint exists no longer than all constraimadables in it. When the
handle ceases to exist after the constraint did, it is ighore

3.3 Obtaining Values from Constrained Variables

In a first version of the Turtle Lib, theonstrained<T> class has aoperator

T() const member function to obtain the actual value of the constdhiregiable.
However, it turns out that this operator sometimes confligte the generation of ex-
pression templates in@quire . Thus the function call operataperator()()

const was overloaded to read a value from a constrained variable:

std::cout << a(); //prints a value matching all constraints
/Il to a

Whenever this operator is invoked, the constraint solvetasted to determine the
value of the appropriate variable. How the value is deteeshidepends mainly on the
solver. When the store is overconstrained and no value caletsemined, an excep-
tion of typeoverconstrained_error (derived fromstd::logic_error)is
raised.

But more often underconstrained situations occur. For fhispose the Tur-
tle Library supports a preferred value. A value of type T can dssigned to a
constrained<T> or used to construct such a variable. This value then becomes
the preferred value of the constrained variable. Now, ifiiht out that more than one
solution exists for a certain variable, the solution closeshe preferred value is taken:

constrained<double> a (3);
require (a <= 2.5);
std::cout << a(); /I prints 2.5

To a certain degree the preferred value acts like a weak r@nistThis is espe-
cially useful, if the constraint solver itself doesn’t sappconstraint hierarchies. Thus
a hierarchic constraint solver isn’'t as necessary as intilggnal Turtle language.

The evaluation of the preferred value is done by the solv@témentation. It can
be used to define threshholdor destinationvalue enabling the solver to terminate the
search through the solution tree as soon as possible.

Some domains consist of incompareable values making it $sipte to define a
closest solution. In this case no general behaviour can fieede Instead the solver
implementation has to define the use of the preferred value.

269

3.4 Implicit Fixing

Once a value is determined for a constrained variable, thlisevhas to be taken into
account for further calculations. The constrained vaddisklf gets implicitly fixed to
the determined value:

constrained<int> a (2), b (0);
require (a == b);

std::cout << a(); // prints 2
std::cout << b(); // also prints 2

Without implicit fixing the value of b would be evaluated to Adahence violate
the required constraint a == b. Implicit fixing is done by gextieg a new constraint
of the form variable == value. Due to this important side eftae evaluation order of
constrained variables must be carefully considered. Ibtltput lines of the above ex-
ample were exchanged, both lines would print 0. And the Yahg leads to unspecified
behavior:

std::cout << a() << b(); // which variable is evaluated
/I first?

The implicit fix is not immediatly added to the constraint satbre but kept in a
delay store inside the sub-store. If only one implicit fix#giin a constraint sub-store,
and the same variable shall be evaluated again, the fix isetzefore the evaluation
(later in the process a new fix will be added). If more implibies exist, always all are
taken into account.

constrained<int> a (2), b (0);

require (a == b);

for (int i = 0; i < 3; ++) {
int j;
std::icin >> |;
a=j

/I prints j, because the only implicit fixed variable is a:
std::cout << a();

}
constrained<int> a (2), b (0);
require (a == b);

std::cout << b(); // prints 0, fixes b
for (int i = 0; i < 3; ++) {

int j;
std::icin >> |;
a=j

/I always prints 0, because b is fixed, but a is evaluated:
std::cout << a();

270

As shown in the last example, sometimes implicit fixes arerifial; especially if
more than one variable is evaluated inside a loop. That'sawgnstrained variable can
be unfixed explicitly via the member functiemfix()

constrained<int> a (2), b (0);

require (a == b);

for (int i = 0; i < 3; ++i) {
int j;
std::icin >> |;
a=j

std::cout << a(); // prints j and get fixed

std::cout << b(); // prints also j and get fixed

/I now more than one fix exist, so all fixes would be
/I considered during further evaluations unless we

/I explicitly unfix the variables:

a.unfix();

b.unfix();

The computation of a value for a constrained variable diféelot from the original
Turtle language. While in the Turtle language the valueoftrained variables are al-
ready determined during a require statement, the Turtlebjtdelays the computation
until a read-action to a constrained variable occurs. Thadliantage of this approach
seems the need of implicit fixing, which isn’t part of the Teittnguagé

On the other hand the delay of the computation offers somardadges. First, only
when the computation is delayed until a read-action, théepred value can be eval-
uated correctly. Otherwise a change of the preferred vétae some requires could
be ignored. Second, a solver knows which constrained Jaratiually is being read,
can consider this fact during the computation and hencendoesve to evaluate all
variables in every case. And third, lazy evaluation becopussible. Altough also the
Turtle Library handle constrainesagermostly, it is not limited to this.

3.5 Lazy Evaluation

Lazy evaluation is an often arising issue when declarativkimperative concepts are
combined. Shall a subexpression in a require-statemenvdlaated immediately or
shall the evaluation be delayed until the constraint isallstuneeded for the evaluation
of a constrained variable? Consider the example:

int foo();

int example()
intca, b
int i = 1;

2 Altough there is an ongoing argument about this topic.

271

require (a == i),

require (b >= foo());

require (a < b);

i =2

std::cout << a(); // 1 or 2 ?, is foo() called here ?
std::cout << b(); /I or is foo() called only here ?

As stated earlier the Turtle Library doesn’t perform lazglenation by default. This
decision was made mainly due to lifetime issues. In C++iitipdssible to ensure that
an arbitrary object exists until all constraints referringt are erased. Hence the above
example prints 1 foa and callsfoo() during the evaluation of the argument for the
secondequire . This has the additional benefit, that possible side effgfdtsnctions
inside constraints are more predictabldoid() would be lazy evaluated in the exam-
ple above, it could be called once or twice, depending on ¢heahimplementation of
the underlying constraint solver.

Lazy evaluation can be simulated through the lifetime manaant of constraints.
But sometimes it is just better to have some lazy evaluatkeegaTherefore a simple
lazy evaluated value type is provided by the Turtle Library:

template<class T>
class lazy_evaluated

{
public:
explicit lazy_evaluated (const T& init = T());
operator T() const;
operator T&();
h

This class mostly acts like a value of type T, but its actudlieas garbage col-
lected (the copy constructor and assignment operattazgf evaluated<T> has
identity semantics). Each constraint using a lazy evatbadeiable stores a copy of the
correspondindazy evaluated<T> variable. The actual value is preserved unless
all references to it are removed. It is only read by the castisolver when needed
during the evaluation of a constrained variable. Side &feray only happen due to the
copying of T.

int ¢ a;

lazy evaluated<int> i = 1;
require (a == i);

i = 2;

std::cout << a(); /lreads i at this point and thus prints 2

4 Programming with the Turtle Library

The Turtle Library can be downloaded from
http://home.t-online.de/home/krize6/turtle.htm

272

At this page also some technical issues are discussed in detad. Especially the
steps needed to integrate a new constraint solver in théeTlilirary are described.
Furthermore some more sophisticated examples of conssimgderative programming
are already provided. They demonstrate the use of someite@mand little patterns
to make constraint imperative programming more converrdtflexible.

4.1 User-defined Constraints and Dynamic Expressions

Often the declarative power of expression templates iscseifii to express the con-
straints in a compact and readable manner. But some canisteae so common that
they deserve an own name. Such user-defined constraintsecgenierated using the
function templatebuild_constraint , Which takes an constraint just like require,
but only builds the internal representation of the givenrespion without adding it to
the constraint store.

typedef constrained<int> int_c;

constraint_solver<int>::expr domain (const int_c& X,

int min,
int max)
{
return build_constraint (x >= min && x <= max);
}
int ¢c a, b, c

require (domain (a, 0, 9));
require (domain (b, 0, 99));
require (domain (c, -1, 1));

The naming of complex static expressions further enhanbes réadability
of a program. But besides this constraint imperative pnogning also needs a
way to create constraints dynamically. For this the Turtlbrary provides a
generic classdynamic_expr , which holds an (sub)expression and can be used
like that, but has value semantics. A rather complex exanipléhe function
example_dynamic_puzzle ,whichis part of the sample file provided on the inter-
net page of the Turtle Library.

4.2 Optimization

Constraint programming supplies a lot of tools to optimizgwen function for a given
set of constraints. Optimization is one the main usages o$tcaint programming.
Hence, optimization should be possible with the Turtle &ifyr too. By using a pre-
ferred value for a given expression, optimization can beedaithout the needs of
special library functions. Consider the following example

double_c x, vy;
require (y >= 0);
require (y >= 3 - 2 * X);

273

Given these constraints the sum of x and y shall be minimiZkdse can be done
by a little pattern of the following three lines:

double_c¢ min (- 1000.0);
require (min == Xx + vy);
std::cout << min(); // prints 1.5

First a constrained variable has to be declared and therpedfealue have to be set
to an absolute minimal or maximal borderSecond, this variable has to be set equal
to the expression to be optimized. And third, by reading tgéable the value closest
to the given preferred value gets calculated and storedarvéniable. Furthermore
the implicit fixing also immediately limits other constrath variables to values at the
searched optimum.

5 Conclusion and Future Works

The Turtle Library defines an interface for the integratidrconstraint programming
concepts in an imperative language and provides an impletien of this interface for
a popular language. Hopes are, that this opens a wider afiplicfield for constraint
imperative programming. Only the practical use will showttier needs. E.g. if an
implicit fix of a constrained variable has to be consideratkiined by a rather complex
rule. It's unclear if this rule is of any practical value. Al§or the moment there is no
way to unfix a bunch of variables at once (e.g. all variables sifib-store).

The clasdazy evaluated<T> should be treated as a simple example for lazy
evaluation. Itis possible to further parametrize thisskasallow more complex actions
during constraint evaluation including the call of funcio If this is done, side effects
of a lazy evaluated function has to be considered carefslistated in section 3.5. At
the moment it's quite unclear if the gain of flexibility outighs the possiblity of near
unpredictable side effects.

The modelling of algebraic problems using the Turtle Ligriaralready very con-
venient. But the generic approach offers a lot more. A lotudflizations in the recent
decade has shown, that constraint programming is wekkgdidr several problem do-
mains. But unfortunately a lot of these publications eithenoduced a whole new lan-
guage or at least extended an existing language by addintangwage constructs (and
thus became incompatible to the parent language). But ditappn programmer can’t
just move from one language to the next at will. Due to businemnagement and also
educational issues he has to stick to one - often for yeart$ #hé Turtle Library now
even the application programmer gets a tool to use conriailC++ in the convenient
declarative manner as it is already used for years in otihgulages.

% This example is rather abstract and hence knows no 'absofinémum. In practical applica-
tions it should be always possible to find a reasonable vake §lsexample _knapsack).

274

Bibliography

[1] Grabmiller, M.: Constraint Imperative Programmindgpldma Thesis, Technische
Universitat Berlin 2003,

[2] Freeman-Benson, B.N.: Constraint Imperative ProgramyaPhD Thesis, Univer-
sity of Washington, 1991. Published as Department of Coerditience and Enge-
nieering Technical Report 91-07-02

[3] Borning, A. and Freeman-Benson, B.N.: The design andementation of Kalei-
doscope’90, a constraint imperative programming langubigBroceedings of the
IEEE Computer Society 1992 International Conference on fiider Languages
pages 174-180, 1992

[4] Lopez, G.: The design and implementation of Kaleidosg@pconstraint impera-
tive programming language. PhD Thesis, University of Wagttn, 1997.

[5] ILOG. ILog Web Site.
http://www.ilog.com , last visited 2003-06-23

[6] Apt, K.R., Brunekreef, J., Partington, V. and Schaerf, Aima-0: An imperative
language that supports declarative programming. ACM &p28(5):1014-1066,
1998.

275

276

Patterns in Datatype-Generic Programming

Jeremy Gibbons

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
jeremy.gibbons@comlab.ox.ac.uk

Abstract. Generic programmingonsists of increasing the expressiveness of
programs by allowing a wider variety of kinds of parametartlis usual. The
most popular instance of this scheme is the C++ Standard [&enpibrary.
Datatype-generic programmirig another instance, in which the parameters take
the form of datatypes. We argue that datatype-generic anogring is suffi-
cient to express essentially all the genericity found in $tendard Template
Library, and to capture the abstractions motivating mdegign patternsMore-
over, datatype-generic programming is a precisely-defire¢in with a rigorous
mathematical foundation, in contrast to generic programgnm general and the
C++ template mechanism in particular, and thereby offeespttospect of better
static checking and a greater ability to reason about gepesgrams. This paper
describes work in progress.

1 Introduction

Generic programmin8, 19] is a matter of making programs more adaptable by mak-
ing them more general. In particular, it consists of allogvinwider variety of entities
as parameters than is available in more traditional progranmlanguages.

The most popular instantiation of generic programming yodahrough the C++
Standard Template Librarng{L). ThesTL is basically a collection of container classes
and generic algorithms operating over those classessThés, as the name suggests,
implemented in terms of C++’s template mechanism, and bydies both its flexibility
and its intractability.

Datatype-generic programmin(@GF) is another instantiation of the idea of generic
programmingbGP allows programs to be parameterized hyadatypeor type functor
DGP stands and builds on the formal foundations of categoryrthand theAlgebra
of Programmingmovement [8, 7, 10], and the language technology of Geneagkel|
[22, 12].

In this paper, we argue thatPis sufficient to express essentially all the genericity
found in thesTL. In particular, we claim that various programming idiomattban at
present only be expressed informallydesign patterngl 7] could be captured formally
as datatype-generic programs. Moreover, becaigeis a precisely-defined notion
with a rigorous mathematical foundation, in contrast toagarprogramming in general
and the C++ template mechanism in particular, this observatfers the prospect of
better static checking of and a greater ability to reasomua@eneric programs than is
possible with other approaches.

277

This paper describes work in progress — in fact, it descrbesk largely in the
future. The United Kingdom’s Engineering and Physical Bcés Research Council is
funding a project calledatatype Generic Programmingtarting around September
2003. The work described in this paper will constitute akethird of that project; a
second strand, coordinated by Roland Backhouse at No#timgis looking at more
of the underlying theory, including logical relations fopdular specifications, higher-
order naturality properties, and termination through ¥f@lindedness; the remainder of
the project consists of an integrative case study.

The rest of this paper is structured as follows. Section 2riless the principles un-
derlying the C++ Standard Template Library. Section 3 nadéig and defines Datatype-
Generic Programming, and explains how it differs from a nands similar approaches
to genericity. Section 4 discusses the Design Patternsmewe and presents our case
for the superiority of datatype genericity over informabge for capturing patterns.
Section 5 concludes by outlining our future plans for tieP project.

2 Principles Underlying the STL

The sTL [6] is structured around four underlying notiortntainer typesiterators,
algorithms andfunction objectsThese notions are grouped into a hierarchy (in fact,
a directed acyclic graph) @onceptsrepresenting different abstractions and their rela-
tionships. The library is implemented using the Gemplate mechanismwhich is the
only means of writing generic programs in C++. This sectidefty analyzes these six
principles, from a functional programmer’s point of view.

2.1 The C++ Template Mechanism

The C++ template mechanism provides a means for classesiaciibins to be parame-
trized by types and (integral, enumerated or pointer) \&llikis allows the programmer
to express certain kinds of abstraction that otherwise @vaot be available. A typical

example of a function parametrized by a type is the functiomp below:

template(class T')
void swap(T& a, T& b) {T ¢ = a;a =b;b=¢;}

main() {
int iy =3, =4; swap(int) (i1, iz);
double d; = 3.5, dy = 4.5; swap(double)(dy, da);
}

The same function template is instantiated at two diffetgneés to yield two different
functions. Container classes form typical examples of ppetazation of a class by a
type; the example below shows the outline oFator class parametrized by size and
by element type.

278

template(class T, int size)
class Vector {private : T values[size];...};

main() {

Vector(int, 3) v;

Vector(Vector(double, 100), 100) matriz;
}

The same class template is instantiated three times, td giehe-dimensional vector
of three integers and a two-dimensional 100-by-100 mafrdoaoibles.

A template is to all intents and purposes a macro; little isar be done with it
until the parameters are instantiated, but the instaatiatthat this yields are normal
code and can be checked, compiled and optimized in the usaallw fact, the de-
cision about which template instantiations are necessamyonly be made when the
complete program is available, namely at link time, andagity the linker has to call
the compiler to generate the necessary instantiations.

The C++ template mechanism is reallyspecial-purpose, meta-programming
technique, rather than a general-purpose generic-progiagntechnique. Meta-
programming consists of writing programs in one languagé glenerate or otherwise
manipulate programs written in another language. The Ciplate mechanism is a
matter of meta-programming rather than programming bextareplated code is not
actually ‘real code’ at all: it cannot be type-checked, cdeth or otherwise manipu-
lated until the template parameter is instantiated. Sommrsem templated code, such
as syntax errors, can be caught before instantiation, eytahe in the minority; static
checking of templates is essentially impossible. Thusaasctemplate is not a formal
construct with its own semantics — it is one of the ingrediéram which such a formal
entity can be constructed, but until the remaining ingnetdi@re provided it is merely
a textual macro. In a programming language that offers suemalate mechanism as
its only support for generic programming, there is no hopeafealculus of generic
programs: at best there can be a calculus of their specifi&rioss.

The template mechanism is a special-purpose, as opposedédoad-purpose, meta-
programming technique, because only limited kinds of coeafdine computation can
be performed. Actually, the mechanism provides surprigrgressive power: Un-
ruh [38] demonstrated the disquieting possibility of a pesg whose compilation
yields the prime numbers as error messages, Czarnecki amthdeker [13] show
the Turing-completeness of the template mechanism by imgatéing a rudimentary
LISP interpreter as a template meta-program, and Alexandrddqrgsents a tour-de-
force of unexpected applications of templates. But eveadhnically template meta-
programming has great expressiveness, it is pragmatinaliya convenient tool for
generating programs; applications of the technique f&eltlicks rather than general
principles. Everything computable is expressible, albeihetimes in unnatural ways.
A true general-purpose meta-programming language woyldat‘programs as data’
as first-class citizens, and simple and obvious (as oppas&ditprising’) techniques
for manipulating such programs [35].

There are several consequences of the fact that templatiedi€@ meta-program
rather than (a fragment of) a pure program. They all boil déaviie fact that separate

279

compilation of the templated code is essentially impossiblisn’t real code until it is
instantiated. Therefore:

— templated code must be distributed in source rather tharypfiorm, which might
be undesirable (for example, for intellectual propertysoees);

— static error checking is in general precluded, and any sroe revealed only at
instantiation time; moreover, error reports are typicalybose and unhelpful, be-
cause they relate to the consequences of a misuse ratheghéarisuse itself;

— there is a problem of ‘code bloat’, because different insadions of the same tem-
plated code yield different units of binary code.

There is work being done to circumvent these problems byriegao partial evalua-
tion [39], but there is no immediate sign of a full resolution

2.2 Container Types

A container typds a type of data structures whose purpose is to contain elesnoé
another type, and to provide access to those elements. Bssmmglude arrays, se-
guences, sets, associative mappings, and so on.

To a functional programmer, this looks likepalymorphic datatypeor example,
data List a« = Nil | Cons « (List «)

A data structure of typdist o for somea will indeed contain elements of type and
will (through pattern-matching, for example) provide et them. Such polymorphic
datatypes can be given a formal semantics via the catejodgtian of afunctor[10],
an operation simultaneously on types (taking a tyfe the typeList o)) and functions
(taking a function of typex — (3 to the map function of typéist o — List [3).

However, that response is a little too simple. Certainljpe@olymorphic datatypes
and some functors correspond to container types, but ndbalFor example, consider
the polymorphic type

data Transformer o = Trans (@ — «)

(The natural way to define this type in Haskell [34] is with pgysynonym rather than
a datatype declaration, but we've chosen the latter to mak@oint clearer.) There is
no obvious sense in which a data structure of tfpensformer « ‘contains’ elements
of type«a. Hoogendijk and de Moor [24] have shown that one wants teicgstttention

to the functors with anembershipperation. Technically, in their relational setting, the
membership of a functaF is the largest lax natural transformation framto /d, the
identity functor; informally, membership is a non-detenistic mapping selecting an
arbitrary element from a container data structure. Sometfus, such agransformer,
have no membership operation, and so do not correspond taigentypes according
to this definition.

280

2.3 lterators

The essence of th&rL is the notion of ariterator, which is essentially an abstraction of
a pointer. The elements of a container data structure are meckssible by providing
iterators over them; the container typically provides agpiensbegin() and end() to
yield pointers to the first element and to ‘one step beyonrelldist element.

Basic iterators may be compared for equality, derefereacedincremented. But
there are many different varieties of iteratmput iteratorsmay be dereferenced only
asRr-values (for reading), andutput iteratorsonly asL-values (for writing);forward
iterators may be deferenced in both ways, and may also be copied (sonthi&iple
elements of a data structure may be accessed at dridegctional iteratorsmay also
be decremented; aredndom-access iterato@low amortized constant-time access to
arbitrary elements.

Despite the name, iterators in tB&L do not express exactly the same idea as the
ITERATOR design pattern, although they have the same intent of ‘diogia way to
access the elements of an aggregate object sequentidiiguviexposing its underlying
representation’ [17]. In fact, the proposed design in [57hirly close to arsTL input
iterator: an existing collection may be traversed from hegig to end, but the identities
of the elements in the collection cannot be changed (alththegjr state may be).

What all these varieties of iterator have in common, thoiggthat they point to in-
dividual elements of the data structure. This is inevitgiilen an imperative paradigm:
as Austern [6] puts it, ‘The moving finger writes, and havingtymoves on’, and al-
though under more refined iterator abstractions the moviggfimay rewrite, and may
move backwards as well as forwards, it is still a finger poigtat a single element of
the data structure.

One functional analogue of iterators for traversing a datecture is themap op-
erator that arises as the functorial action on element foimgt acting on each element
independently. More generally, one could pointionadic map§gl5], which act on the
elements one by one, using the monad to thread some ‘stateigh the computation.

However, lazy functional programmers are liberated by thalability of ‘new
kinds of glue’ [26] for composing units of code, and have othgtions too. For exam-
ple, they may use lists to achieve a similar separation ofeors: the interface between
a collection data structure and its elements is via a lishe$é¢ elements. The analogue
to the distinction between input and output iteratgrsélues and -values) is the pro-
vision of one function to yield theontentof a data structure as a list of elements, and
another tageneratea new data structure from a given list of elements.

This functional insight reveals a rather serious omissiorthie STL approach,
namely that it only allows the programmer to manipulate ag#tucture in terms of its
elements. This is a very small window through which to view ttata structure itself.
A map ignores the shape of a data structure, manipulatingléments but leaving the
shape unchanged; iterator-style access also (delibgréjebres the shape, flattening
it to a list. Neither is adequate for capturing problems thaloit the shape of the data,
such as pretty-printers, structure editors, transforonangines and so on. A more gen-
eral framework is obtained by provididgldsto consume data structures amafolds
to generate them [18] — indeed, thentents andgenerate functions mentioned above
are instances of folds and unfolds respectively, ane:a is both a fold and an unfold.

281

2.4 Concepts

We noted in the previous section that the essence obtheis a hierarchy of vari-
eties of iterator. In theTL, the members of this hierarchy are caltzhceptsRoughly
speaking, a concept is a set of requirements on a type (irstefrthe operations that
are available, the laws they satisfy, and the asymptotigudexities in time and space);
equivalently, a concept can be thought of as the set of adisgatisfying those require-
ments.

Concepts are not part of C++; they are merely an artifact@fth.. An STL refer-
ence manual [6] can do no more than to describe a conceptse pEmnsequently, it is
a matter of informal argument rather than formal reasonihgther a given type is or
is not a model of a particular concept. This is a problem farsi®f thesTL, because
it is easy to make mistakes by using an inappropriate typeparécular context: the
compiler cannot in general check the validity of a particulae, and tracking down
errors can be tricky. There have been some valiant attemptddress this problem by
programming idioms [36, 31] or static analysis [21], butrakitely the language seems
to be a part of the problem here rather than a part of the soluti

The solution seems obvious to the Haskell programmer: yse ¢tlasses [29]. A
type class captures a set of requirements on a type, or éepiileit describes the set of
types that satisfy those requirements. (Type classes are timan just interfaces: they
can provide defaultimplementations of operations too tgpel class inference amounts
to automatic selection of an implementation.) Type clasgseonly an approximation
to the notion of a concept in theerL sense, because they can capture only the signatures
of operations and not their extensional (laws) or intersignomplexity) semantics.
However, they are statically checkable within the langyaggch is at least a step
forwards: C++ concepts cannot even capture signaturesfty:iihe Haskell collection
class library Edison [11, 33] uses type classes formallhéndame way tha&TL uses
concepts informally.

2.5 Algorithms and Function Objects

The bulk of thesTL, and indeed its whole raison d’étre, is the family of genafgo-
rithmsover container types made possible by the notion of an @eréhese algorithms
are general-purpose operations such as searching, sadimgaring, copying, permut-
ing, and so on. lterators decouple the algorithms from tiéainer types on which they
operate: the algorithm is described in terms of an absti@ettor interface, and is then
applicable to any container type on which an appropriatatioe is available.

There is no new insight provided by the algorithms per sey #irese as a natural
consequence of the abstractions provided (whether infbyras concepts or formally
as type classes) to access the elements of container typtse $TL, algorithms are
represented as function templates, parametrized by moéiéhe appropriate iterator
concept. To a Haskell programmer, algorithms in this semssespond to functions
with types qualified by a type class.

The remaining principle on which therL is built is that of afunction objec{some-
times called a ‘functor’, but in a different sense that thectors of category theory).
Function objects are used to encapsulate function parasitetalgorithms; typical uses

282

are for parametrizing a search function by a predicate atitig what to search for, or
a sorting procedure by an ordering.

Function objects also yield no new insight to the functiggragrammer. In theTL,
a function object is represented as an object with a singkhadewhich performs the
function. This is essentially an instance of theR&TEGY design pattern [17]. To a
functional programmer, of course, function objects areawessary: functions are first-
class citizens of the language, and a function can be passegarameter directly.

3 Datatype Genericity

We propose a new paradigm for generic programming, whichave ballecdatatype-
generic programmingDGP). The essence afGris the parametrization of values (for
example, of functions) by datatype We use the term ‘datatype’ here in the sense dis-
cussed in Section 2.2: a container type, or more formallynatfur with a membership
operation. For examplelist’ is a datatype, whereasit’ is merely a type.

(Since a datatype is one type parametrized by another —s ‘tiftxs, for some
type o’ — and a datatype-generic program is a program parametiizedn by such
a type-parametrized type, we toyed briefly with the idea aicdbing our proposal as
for a ‘type-parametrized—type’—parametrized theory of prognaing or TPTPTPfOr
short. But we decided that was a bit of a mouthful.)

3.1 An Example of DGP
Consider for example the parametrically polymorphic paogsmaplist,

maplist :: (« — B) — List « — List 8
maplist f Nil = Nil
maplist f (Cons a z) = Cons (f a) (maplist f)

and (for the appropriate definition of thiee datatype)naptree,

maptree :: (a« — () — Tree o« — Tree 3
maptree f (Tip a) = Tip (f a)
maptree | (Bin x y) = Bin (maptree f x) (maptree [y)

Both of these programs are already quite generic, in theesbasa single piece of code
captures many different specific instances. However, tlogpnegrams are themselves
clearly related, and aGp language would allow their common features to be captured
in a single definitionnap:

map(Unit)) =)
map{Const a) x ==
map(+) § g (Inl w) = Inl (f)
map{+) f g (Inr v) = Inr (g v)
map(x) f g (w,v) = (fu,gv)

283

This single definition is parametrized by a datatype; in taise it is defined by struc-
tural induction over a grammar of datatypes. The two pardoadiy polymorphic
programs are of course instances of this one datatype-4iggmegram:maplist =
map(List) andmaptree = map(Tree).

At first glance, this looks rather like a generic algorithrattbould have come from
thesTL, and indeed in this case that is a valid analogy to makegi-like operations can
be expressed in th&TL. However, the crucial difference is thatp allows a program
to exploit the shape of the data on which it operates. For example, onle ewite
datatype-generic functions to encode a data structure @sstibg and to decode the
bit string to regenerate the data structure [27]:ghapeof the data structure is related
to thevalue of the bitstring. A more sophisticated example involves tsu&ipper’
[25] for efficiently but purely functionally representingtiiee with a cursor position;
different types of tree require different types of zipperdat is possible [1, 23] to
write datatype-generic operations on the zipper: heresliagpe of one data structure
determines the shape of an auxilliary data structure in leeratomplicated fashion.
Neither of these examples are possible withgime.

3.2 Isn’t This Just...?

As argued above, the parametrization of programs by daatyg not the same as
generic programmingn the sTL sense. The latter allonabstraction fromthe shape
of data, but noexploitation ofthe shape of data. Indeed, this is why we chose a new
term ‘DGP instead of simply usingGP': we would prefer the latter term, but feel that it
has already been appropriated for a more specific use tharoule like. (For example,
one often sees definitions such as ‘Generic programming istaadology for program
design and implementation that separates data structudedgorithms through the use
of abstract requirement specifications’ [37, p19]. We feal tsuch definitions reduce
generic programming to good old-fashioned abstraction.)

DGP is not the same thing ameta-programmingn general, and template meta-
programming in particular. Meta-programming is a mattemoiting programs that
generate or otherwise manipulate other programs. For éear@p+ template meta-
programs yield ordinary C++ code when instantiated (attleasonally, although the
code so generated is typically never seen); they are natangC++ programs in their
own right. A meta-program for a given programming languaggypically not a pro-
gram written in that language, but one written in a meta-leagg that generates the
object program when instantiated or executed. In contaadgtatype-generic program
is a program in its own right, written in (perhaps an enrichtrad) the language of the
object program.

Neither isbGP the same thing as polymorphism, in any technical sense we.kno
It is clearly not the same thing as ordingwgrametric polymorphismwhich allows
one to write a single program that can manipulate both litisitegers and lists of
characters, but does not allow one to write a single proghatrhanipulates both lists
of integers and trees of integers. We also believe (but havéoystudy this in depth)
thatbGPis not the same thing dsgher-order parametric polymorphiseither, because
in general the programs are not parametric in the functamater: if they were, they

284

might manipulate the shape of data but could not computeityitis with the encoding
and decoding example cited above.

Nor is it the same thing adependently typed programmiifig], which is a mat-
ter of parametrizing types by values rather than values pggyDependent types are
very general and powerful, because they allow the types lokgan the program to
depend on other values computed by that program; but by tine saken they rule
out the possibility of most static checking. (A class tenwplgarametrized by a value
rather than a type bears some resemblance to type depemderatue, but in C++ the
actual template parameters must be statically determimeth$tantiation at compile
time, whereas dependent type theory requires no such siepasbstages.) It would be
interesting to try to develop a calculus of dependently typegramming, but that is a
different project altogether, and a much harder one too.

Finally, DGPis not simply Generic Haskell [12], although the datatyeeric pro-
gram formap we showed above is essentially a Generic Haskell prograsmGEneric
Haskell project is concentrating on the design and impleat&Em of a language that
supportsbGP, but is not directly addressing the problem of developinglawdus of
such programs. Our project has strong connections with #vee@c Haskell project,
and we are looking forward to making contributions to theglebased on our theory-
driven insights, as the language is making contributiongh#&theory by posing the
question of how it may be used. However, Generic Haskellssgne possible imple-
mentation technique farGrp.

4 Patterns of Software

A design patterrisystematically names, motivates, and explains a genesigid that
addresses a recurring design problem in object-orientstés)ys’ [17]. The intention
is to capture best practice and experience in software ésigrder to facilitate the
education of novices in what constitutes good designs,l@ddmmunication between
experts about those good designs. The software patternsment is based on the
work of Christopher Alexander, who for over thirty years leen leading a similar
movement in architecture [3, 2].

It could be argued that many of the patterns in [17] are idif@nsnimicking bGP
in languages that do not properly support such a featureaugscof the lack of proper
language support, a pattern can generally do no betterohantivate, describe and ex-
emplify an idiom: it can refer indirectly to the idiom, buttnaresent the idiom directly
as a formal construction. For example, theRATOR pattern shows how an algorithm
that traverses the elements of a collection type can be gémibdrom the collection
itself, and so can work with new and unforeseen collectigresy but for each such
collection type an appropriate newdRATOR class must be written. (The programmer
may be assisted by the library, as in Java [20], or the languagyin G [14], but still
has to write something for each new collection type.) A laagpithat supportedGpP
would allow the expression of a single datatype-generigim directly applicable to
an arbitrary collection type: perhaps a function to yield glements as a lazy list, or a
map operation to transform each element of a collection.

285

The situation is no better with th&rL than with design patterns. We argued above
that iterators in thesTL sense are more general than theRATOR pattern. Neverthe-
less, C++ provides no support for defining the iterator cphcgo it too can only be
referred to indirectly; and again, for every new collectiype an appropriate imple-
mentation of the concept must be provided.

As another example, thel¥ITOR pattern [17] allows one to decouple a multivariant
datatype (such as abstract syntax trees for a programmmiggédae) from the specific
traversals to be performed over that datatype (such as hgamking, pretty printing, and
so on), allowing new traversals to be added without modgyand recompiling each
of the datatype variants. However, each new datatype sraaibw class of MITOR,
implemented according to the pattern.D&P language would allow one to write a
single datatype-generic traversal operator (suchfagia once and for all multivariant
datatypes.

(Alexandrescu [4] does present a ‘nearly generic’ definitbthe VISITOR pattern
using clever template meta-programming, but it relies or @xacros, and still requires
the foresight in designing the class hierarchy to insertla@#his macro in every class
in the hierarchy that might be visited.)

It is sometimes said that patterns cannot be automatechiagythat can be cap-
tured completely formally is too restricted to be a propdtgya. Alexander describes
a pattern as giving ‘the core of the solution to [a] problemsuich a way that you can
use this solution a million times over, without ever doinghi¢ same way twice’ [3];
Gamma et al. state that ‘design patterns are not about desigr as linked lists and
hash tables that can be encoded in classes and reused a3.i8V§lare sympathetic to
the desire to ensure that patternity does not become a symfamya good idea’, but do
not feel that that means we should give up on attempts to farenpatterns.

Alexander, in his foreword to Gabriel's book [16], hopestitie software patterns
movement will yield ‘programs which make you gasp becaustheir beauty’. We
think that’s a goal worth aiming for, however optimistigaNVe have yet to see a meta-
programming framework that supports beautiful prograngnfaithough we confess to
being impressed by the intricate possibilities of templagta-programming demon-
strated by [4]), but we have high hopes that datatype-gepesgrams could be breath-
takingly beautiful.

5 Future Plans

The DGP project is due to start around September 2003; the workradtlin this pa-
per constitutes about a third of the total. One of the inigimhs of this strand will
be an investigation into the relationships between gemeugramming (as exhibited
in libraries like thesTL), structural and behavioural design patterns (as desthbie
[17]), and the mathematics of program construction (epitech by Hoogendijk and
de Moor’s categorical characterization of datatypes [24])

In the short term, we intend to use the insights gained framitivestigation to
prototype a datatype-generic collection library in Genétaskell [12] (perhaps as a
refinement of Okasaki’'s Edison library [33]). This will allcus to replace type-unsafe
meta-programming with type-safe and statically checkdbtatype-generic program-

286

ming. Ultimately, however, we hope to be able to apply thes@hts to programming
in more traditional object-oriented languages, perhapsypilation from a dedicated
DGPlanguage.

But the real purpose of the project will be to generalize thesoof program calcu-
lation such as Bird and de Moor’s relational ‘algebra of pezgming’ [10], to make it
more applicable to deriving the kinds of programs that usétse sTL write. This will
link with Backhouse’s strand of theGp project, which is looking at more theoretical
aspects of datatype genericity: higher-order naturatibpprties, logical relations, and
so on. We intend to build on this work to develop a calculugg@meric programming.

More tangentially, we have been intrigued by similaritiesieen some of the more
esoteric techniques for template meta-programming [1@nd]some surprising possi-
bilities for computing with type classes in Haskell [32, 8], It isn’t clear yet whether
those similarities are a coincidence or evidence of sompeatemrrespondence; in the
light of our arguments in this paper that type classes aréitiekell analogue ofTL
concepts, we suspect there may be some deep connection here.

6 Acknowledgements

The help of the following people and organizations is graigficknowledged:

— Roland Backhouse, Graham Hutton, Ralf Hinze and Johamigdor their contri-
butions to theoGP grant proposal;

— Richard Bird, for inspiring and encouraging this line of airy;

— Tim Sheard, for his elegant definition of generic prograngnin

— EPSRC grant GR/S27078/01, for financial support.

287

Bibliography

[1] Michael Abbott, Thorsten Altenkirch, Neil Ghani, and @ McBride. Deriva-
tives of containers. In Martin Hofmann, edittNCS 2701: Typed Lambda Cal-
culi and Applicationspages 16—30. Springer-Verlag, 2003.

[2] Christopher AlexandeiThe Nature of OrderOxford University Press, To appear
in 2003.

[3] Christopher Alexander, Sara Ishikawa, Murray Silvelst Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo AngeA Pattern LanguageOxford University Press,
1977.

[4] Andrei AlexandrescuModern C++ Design Addison-Wesley, 2001.

[5] Lennart Augustsson. Cayenne: A language with depengpes. SIGPLAN No-
tices 34(1):239-250, 1999.

[6] Matthew H. AusternGeneric Programming and the STAddison-Wesley, 1999.

[7]1 R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcoln$.TVoermans, and
J. van der Woude. Polynomial relators. In M. Nivat, C.S. RaitT. Rus, and
G. Scollo, editorsProceedings of the 2nd Conference on Algebraic Methodology
and Software Technology, AMAST,9dages 303-326. Springer-Verlag, Work-
shops in Computing, 1992.

[8] R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, & van der Woude.
Relational catamorphisms. In Bernhard Moller, editipceedings of the IFIP
TC2/WG2.1 Working Conference on Constructing Programms f&pecifications
pages 287-318. Elsevier Science Publishers B.V., 1991.

[9] Roland Backhouse and Jeremy Gibbons. Programming with ¢lasses. Presen-
tation at WG2.1#55, Bolivia, January 2001.

[10] Richard S. Bird and Oege de Mo@tlgebra of ProgrammingPrentice Hall, 1997.

[11] Andrew Bromage. Haskell Foundation Libraryww.sourceforge.net/
projects/hfl/ ,2002.

[12] Dave Clarke, Ralf Hinze, Johan Jeuring, Andres Lold, Zem de Wit. The Generic
Haskell user’s guide. Technical Report UU-CS-2001-26 vdrsiteit Utrecht,
2001.

[13] Krzysztof Czarnecki and Ulrich Eiseneck&enerative Programming: Methods,
Tools and ApplicationsAddison-Wesley, 2000.

[14] Peter Drayton, Ben Albahari, and Ted Newa@y.in a Nutshell O'Reilly, 2002.

[15] Maarten Fokkinga. Monadic maps and folds for arbitrdayatypes. Dept INF,
Univ Twente, June 1994.

[16] Richard P. Gabriel.Patterns of Software: Tales from the Software Community
Oxford University Press, 1996.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and Johrsidis. Design Pat-
terns: Elements of Reusable Object-Oriented Softwadzison-Wesley, 1995.

[18] Jeremy Gibbons. Origami programming. In Jeremy Gilshamd Oege de Moor,
editors,The Fun of ProgrammindPalgrave, 2003.

[19] Jeremy Gibbons and Johan Jeuring, edit@sneric ProgrammingKluwer Aca-
demic Publishers, 2003.

288

[20] James Gosling, Bill Joy, Guy Steele, and Gilad Braditee Java Language Spec-
ification Second EditionAddison-Wesley, Boston, Mass., 2000.

[21] Douglas Gregor and Sybille Schupp. Making the usagelaf &fe. In Gibbons
and Jeuring [19].

[22] Ralf Hinze. Polytypic values possess polykinded typ&zience of Computer
Programming43:129-159, 2002. Earlier version appearsin LNCS 1837hkta
matics of Program Construction, 2000.

[23] Ralf Hinze and Johan Jeuring. Weaving a wdburnal of Functional Program-
ming, 11(6):681-689, 2001.

[24] Paul Hoogendijk and Oege de Moor. Container types categlly. Journal of
Functional Programming10(2):191-225, 2000.

[25] Gérard Huet. The zipperJournal of Functional Programming/(5):549-554,
September 1997.

[26] John Hughes. Why functional programming matté&smputer Journgl1989.

[27] Patrik Jansson and Johan Jeuring. Polytypic data csioveprograms.Science
of Computer Programmingt3(1):35-72, 2002.

[28] Mehdi Jazayeri, Rudiger G. K. Loos, and David R. Musseeditors.Generic Pro-
gramming Springer-Verlag, 2000.

[29] Mark P. JonesQualified Types: Theory and PracticBPhil thesis, University of
Oxford, 1992.

[30] Conor McBride. Faking it: Simulating dependent typesHaskell. Journal of
Functional Programmingl2(4&5):375-392, 2002.

[31] Brian McNamara and Yannis Smaragdakis. Static inte$ain C++. InFirst
Workshop on C++ Template Programmin@ctober 2000.

[32] Matthias Neubauer, Peter Thiemann, Martin Gasbicldad Michael Sperber.
Functional logic overloading. I8ymposium on Principles of Programming Lan-
guagespages 233-244, 2002.

[33] Chris Okasaki. An overview of Edison. Haskell Workshap00.

[34] Simon Peyton Jones, editoHaskell 98 Language and Libraries: The Revised
Report Cambridge University Press, 2003.

[35] Tim Sheard and Simon Peyton Jones. Template meta-gmoging for Haskell.
In Haskell Workshop2002.

[36] Jeremy Siek and Andrew Lumsdaine. Concept checkingdiBg parametric
polymorphism in C++. IrFFirst Workshop on C++ Template Programmingcto-
ber 2000.

[37] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaifibe Boost Graph Li-
brary. Addison-Wesley, 2002.

[38] Erwin Unruh. Prime number computation. ANSI X3J16-@a75/ISO WG21-
462, 1994.

[39] Todd Veldhuizen. Five compilation models for C++ templs. InFirst Workshop
on C++ Template ProgrammindDctober 2000.

289

290

NIC Series John von Neumann Institute for Computing

Already published:

Modern Methods and Algorithms of Quantum Chemistry -
Proceedings

Johannes Grotendorst (Editor)

Winter School, 21 - 25 February 2000, Forschungszentrum Jilich
NIC Series Volume 1

ISBN 3-00-005618-1, February 2000, 562 pages

out of print

Modern Methods and Algorithms of Quantum Chemistry -

Poster Presentations

Johannes Grotendorst (Editor)

Winter School, 21 - 25 February 2000, Forschungszentrum Julich
NIC Series Volume 2

ISBN 3-00-005746-3, February 2000, 77 pages

out of print

Modern Methods and Algorithms of Quantum Chemistry -
Proceedings, Second Edition

Johannes Grotendorst (Editor)

Winter School, 21 - 25 February 2000, Forschungszentrum Jilich
NIC Series Volume 3

ISBN 3-00-005834-6, December 2000, 638 pages

Nichtlineare Analyse raum-zeitlicher Aspekte der
hirnelektrischen Aktivit at von Epilepsiepatienten
Jochen Arnold

NIC Series Volume 4

ISBN 3-00-006221-1, September 2000, 120 pages

Elektron-Elektron-Wechselwirkung in Halbleitern:

Von hochkorrelierten koh arenten Anfangszust anden
zu inkoh &rentem Transport

Reinhold Lovenich

NIC Series Volume 5

ISBN 3-00-006329-3, August 2000, 146 pages

Erkennung von Nichtlinearit &ten und
wechselseitigen Abh angigkeiten in Zeitreihen
Andreas Schmitz

NIC Series Volume 6

ISBN 3-00-007871-1, May 2001, 142 pages

291

Multiparadigm Programming with Object-Oriented Language S -
Proceedings

Kei Davis, Yannis Smaragdakis, Jorg Striegnitz (Editors)

Workshop MPOOL, 18 May 2001, Budapest

NIC Series Volume 7

ISBN 3-00-007968-8, June 2001, 160 pages

Europhysics Conference on Computational Physics -
Book of Abstracts

Friedel Hossfeld, Kurt Binder (Editors)

Conference, 5 - 8 September 2001, Aachen

NIC Series Volume 8

ISBN 3-00-008236-0, September 2001, 500 pages

NIC Symposium 2001 - Proceedings

Horst Rollnik, Dietrich Wolf (Editors)

Symposium, 5 - 6 December 2001, Forschungszentrum Jilich
NIC Series Volume 9

ISBN 3-00-009055-X, May 2002, 514 pages

Quantum Simulations of Complex Many-Body Systems:

From Theory to Algorithms - Lecture Notes

Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands

NIC Series Volume 10

ISBN 3-00-009057-6, February 2002, 548 pages

Quantum Simulations of Complex Many-Body Systems:

From Theory to Algorithms- Poster Presentations

Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands

NIC Series Volume 11

ISBN 3-00-009058-4, February 2002, 194 pages

Strongly Disordered Quantum Spin Systems in Low Dimensions
Numerical Study of Spin Chains, Spin Ladders and
Two-Dimensional Systems

Yu-cheng Lin

NIC Series Volume 12

ISBN 3-00-009056-8, May 2002, 146 pages

Multiparadigm Programming with Object-Oriented Language S -
Proceedings

Jorg Striegnitz, Kei Davis, Yannis Smaragdakis (Editors)

Workshop MPOOL 2002, 11 June 2002, Malaga

NIC Series Volume 13

292

ISBN 3-00-009099-1, June 2002, 132 pages

Quantum Simulations of Complex Many-Body Systems:

From Theory to Algorithms - Audio-Visual Lecture Notes

Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands

NIC Series Volume 14

ISBN 3-00-010000-8, November 2002, DVD

Numerical Methods for Limit and Shakedown Analysis
Manfred Staat, Michael Heitzer (Eds.)

NIC Series Volume 15

ISBN 3-00-010001-6, February 2003, 306 pages

Design and Evaluation of a Bandwidth Broker that Provides
Network Quality of Service for Grid Applications

Volker Sander

NIC Series Volume 16

ISBN 3-00-010002-4, February 2003, 208 pages

Automatic Performance Analysis on Parallel Computers with
SMP Nodes

Felix Wolf

NIC Series Volume 17

ISBN 3-00-010003-2, February 2003, 168 pages

Haptisches Rendern zum Einpassen von hochaufgel Gsten
Molekdulstrukturdaten in niedrigaufgel Gste
Elektronenmikroskopie-Dichteverteilungen

Stefan Birmanns

NIC Series Volume 18

ISBN 3-00-010004-0, September 2003, 178 pages

Auswirkungen der Virtualisierung auf den IT-Betrieb

Wolfgang Girich (Editor)

Gl Conference, 4 - 5 November 2003, Forschungszentrum Jilich
NIC Series Volume 19

ISBN 3-00-009100-9, October 2003, 126 pages

NIC Symposium 2004

Dietrich Wolf, Gernot Miinster, Manfred Kremer (Editors)
Symposium, 17 - 18 February 2004, Forschungszentrum Jiilich
NIC Series Volume 20

ISBN 3-00-012372-5, February 2004, 482 pages

293

Measuring Synchronization in Model Systems and
Electroencephalographic Time Series from Epilepsy Patien ts
Thomas Kreutz

NIC Series Volume 21

ISBN 3-00-012373-3, February 2004, 138 pages

Computational Soft Matter: From Synthetic Polymers to Prot eins -

Poster Abstracts

Norbert Attig, Kurt Binder, Helmut Grubmdller, Kurt Kremer (Editors)

Winter School, 29 February - 6 March 2004, Gustav-Stresemann-Institut Bonn
NIC Series Volume 22

ISBN 3-00-012374-1, February 2004, 120 pages

Computational Soft Matter: From Synthetic Polymers to Prot eins -
Lecture Notes

Norbert Attig, Kurt Binder, Helmut Grubmdller, Kurt Kremer (Editors)

Winter School, 29 February - 6 March 2004, Gustav-Stresemann-Institut Bonn
NIC Series Volume 23

ISBN 3-00-012641-4, February 2004, 440 pages

Synchronization and Interdependence Measures and their Ap plications
to the Electroencephalogram of Epilepsy Patients and Clust ering of Data
Alexander Kraskov

NIC Series Volume 24

ISBN 3-00-013619-3, May 2004, 106 pages

High Performance Computing in Chemistry

Johannes Grotendorst (Editor)

Report of the Joint Research Project:

High Performance Computing in Chemistry - HPC-Chem
NIC Series Volume 25

ISBN 3-00-013618-5, December 2004, 160 pages

All volumes are available online at http://www.fz-juelich.de/nic-series/.

294

